Paper / Subject Code: 41972 / Chemical Engineering Equipment Design June 6, 2024 10:30 am - 01:30 pm 1T00537 - B.E.(Chemical Engineering)(SEM-VII)(Choice Base Credit Grading System) (R- 2019-20) (C Scheme) / 41972 - Chemical Engineering Equipment Design QP CODE: 10057079 Duration: 3 hours

Duration: 3 hours Total Mar		ks: 80	
N. B.	(i) Question number one is compulsory.(ii) Answer any three questions from the rest.		
	(ii) Assume suitable data wherever necessary.		
Q1	Write short note on any four	20	
	(a) Types of heads. Explain any one with neat diagram.(b) Dye Penetration Method(c) Shell and tube type Heat Exchanger		
	(d) Power Requirement for Agitation	40	
	(e) List out types of roofs. Explain any one in detail.		
Q2	 a) Write the design procedure for a Standard Vertical Short Tube Evaporator for the following data- Design should include- (a) Diameter of tube sheet, (b) Calendria sheet thickness, 	12	
	(c) Tube sheet thickness,		
	(d) Drum diameter and thickness		
	b) Explain with neat diagram different types of agitators and their applications.	08	
Q3	a) Design a U-tube heat exchanger for the following data- Shell Side:	12	
	Design Pressure = 0.8 N/mm ² Permissible stress of shell material = 100 N/mm ²		
	Standard tori spherical head with knuckle radius = 6% crown radius		
	25 % cut segmental baffles Gasket on shell side = flat metal jacketed asbestos filled		
	Gasket factor = 3.75		
	Gasket seating stress = 53 N/mm^2		
	Tube side:		
	No of Tubes = 40		
	Tube outside diameter = 20 mm		
	Design pressure of tube side fluid $= 2 \text{ N/mm}^2$ Permissible stress for tube material $= 120 \text{ N/mm}^2$		
	Tube pitch = square 35 mm		
	Channel and channel cover MOC same as shell, Joint with tube sheet ring facing with 18 mm width		
	Gasket factor = 5.5		
	Design i) Shell diameter and thickness		
	ii) Flanged joint between shell and tube sheet		
	iii) Tube sheet thickness	0.0	
	b) List out types of NDT methods. Explain Radiography in detail with neat diagram.	08	
Q4	a) Write the detail design procedure of tall column shell thickness calculation.	12	
	Design procedure should include calculation of column stresses. b) Explain Various types of jackets with past diagram and write design of plain jacket.	08	

a) Design storage tank for following data: (Shell plates and bottom plates) Q5 Tank diameter = 3 mTank height = 6 mDensity of liquid = 980 kg/m^3 Superimposed load = 1200 N/m^2 MOC = CSPermissible stress = 95 N/mm^2 Density of MOC = 7800 kg/m^3 Corrosion allowance = 2 mm $E = 2*10^5 \text{ N/mm}^2$ Weld joint efficiency = 0.85Shell plate and bottom plate size = $5000 \times 2000 \text{ mm}$ (L x W) b) Short Note on i) Losses in storage vessel Design Pressure and Design Temperature a) Design the flanged joint for a cylindrical pressure vessel for the following data 12 **Q6** $= 0.5 \text{ N/mm}^2$ Design pressure Shell Outside diameter = 1000 mm Shell Inside diameter = 988 mmShell thickness = 6 mm**Bolt Material** = Hot rolled carbon steel Allowable stress for bolt material At atmospheric condition = 57 N/mm^2 $= 53 \text{ N/mm}^2$ At operating condition Allowable stress for flange (carbon steel) = 95 N/mm^2 Gasket factor = 2Minimum design seating stress $= 11 \text{ N/mm}^2$ 08 b) Write short notes on i) Explain types of losses in storage of volatile liquids. ii) Explain Internal Parts of Packed column

57079