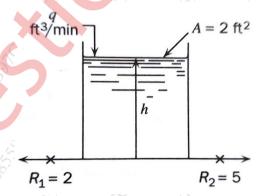
Paper / Subject Code: 41971 / Instrumentation Process Dynamics and Control

1T00537 - B.E.(Chemical Engineering)(SEM-VII)(Choice Base Credit Grading System) (R- 20) (C Scheme) / 41971 - Instrumentation Process Dynamics and Control

QP CODE: 10015527 DATE: 08/12/2022

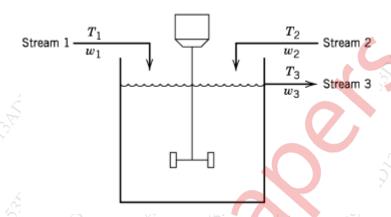
Time: 3 Hours Total Marks:-80

N.B:


- 1) Question 1 is compulsory. Answer any three questions from the remaining.
- 2) Assume data if necessary and specify the assumptions clearly
- 3) Draw neat sketches wherever required
- 4) Answer to the sub-questions of an individual question should be grouped and written together.
- Q.1.a) Discuss degrees of freedom analysis for process (N_F) and degrees of freedom analysis for process control (N_{FC})? Also discuss the relation between them [05]
- Q.1.b) Explain Phase Margin and Gain Margin?

[05]

- Q.1.c) Define a unit pulse function mathematically and graphically. Also derive the Laplace transform [05]
- Q.1.d) Discuss performance criteria for closed loop systems


[05]

Q.2.a) Derive the transfer function H/Q for the liquid level system shown in figure. The resistances are linear. H and Q are deviation variables. Show clearly how you derive the transfer function. You are expected to give numerical values in the transfer function [10]

QP CODE: 10015527

Q.2.b) A perfectly stirred, constant-volume tank has two input streams, both consisting of the same liquid. The temperature and flow rate of each of the streams can vary with time. Derive a dynamic model that will describe transient operation. Also perform degrees of freedom analysis assuming that both Streams 1 and 2 come from upstream units (i.e., their flow rates and temperatures are known functions of time). Notes: w_i denotes mass flow rate for stream i. Liquid properties are constant (not functions of temperature).

Q.3.a) consider the following transfer function

$$G(s) = \frac{Y(s)}{U(s)} = \frac{3}{10s+1}$$

Find the steady state gain and time constant?

If U(s)=2/s, what is the value of the output y(t) when $t\to\infty$?

For the same U(s), what is the value of the output when t=10?

If $U(s) = (1-e^{-s})/s$, that is the unit rectangular pulse, what is the output when $t \to \infty$?

If $u(t) = \delta(t)$, that is the unit impulse at t=0, what is the output when $t \to \infty$? [10]

Q.3.b) The dynamic behavior of the liquid level in each leg of a manometer tube, responding to a change in pressure, is given by where h(t) is the level of fluid measured with respect to the initial steady-state value, p(t) is the pressure change, and R,L,g,ρ , and µare constants.

$$\frac{d^2h}{dt^2} + \frac{6\mu}{R^2\rho}\frac{dh}{dt} + \frac{3}{2}\frac{g}{L}h = \frac{3}{4\rho L}p(t)$$

- (i) Rearrange this equation into standard gain-time constant form and find expressions for K, τ and ξ in terms of the physical constants.
- (ii) For what values of the physical constants does the manometer response oscillate?
- (iii) Would changing the manometer fluid so that ρ (density) is larger make its response more oscillatory, or less?

QP CODE: 10015527

Q.4.a) Explain in detail Turbine Flow meter with neat diagram

[10]

- Q.4.b) Consider a feedback control system with process transfer function of 5/(10s+1), disturbance transfer function of -0.5/(10s+1), measurement dynamics 1/(0.1s+1) and valve dynamics of 1/(s+1). This process is controlled by a P controller with gain 0.45. What will be the offset if the set point is changed by 2 units?
- Q.5.a) For a system with $G(s)H(s) = \frac{K(1+s)^2}{s^3}$ find range of 'K' for system to be stable
- Q.5.b) For unity feedback system with $G(s) = \frac{10}{s(s+1)(s+5)}$ sketch the Bode plot. Find Gain margin, Phase margin, Gain cross over frequency, phase cross over frequency and Comment on stability
- Q.6.a) Define all performance characteristics of instruments in detail [10]
- Q.6.b) Discuss continuous cycling controller tuning method in detail with steps [10]