16/05/2025 TE CHEMICAL SEM-VI C-SCHEME CRE-II QP CODE: 10086006

(3 Hours) [Total: 80]

N.B.: (1) Question No. 1 is compulsory.

- (2) Solve any three questions from the remaining questions.
- (3) Assume suitable data wherever necessary.
- Q 1. Answer the following questions:

(20)

- (a) Write a short note on the Shrinking core model and the Progressive conversion model..
- (b) What are the first, second and third moments of RTD.
- (c) What is the significance of Hatta number in fluid fluid reactions?
- (d) Write a short note on the Fluidised bed reactor.
- Q.2.(a) Derive the Langmuir-Hinshelwood type of rate equation for the reaction –

$$A + B \rightleftharpoons R + S$$

Where the adsorption of B is rate rate-controlling step.

(10)

- (b) Calculate the time required to burn to completion spherical particles of graphite (radius 12 mm, bulk density 2.4 g/cc) in a 14 % oxygen stream at 900°C and 1 atm. Assume the gas film resistance to be negligible. Surface reaction rate constant, k" = 25 cm/s.
- Q.3. (a) Develop a conversion time relationship for shrinking spherical particles when resistance through the gas film is controlling. (10)
 - (b) Explain in detail the contacting patterns in fluid-fluid reactions. (10)
- Q.4. a) The data given below represent a continuous response to a pulse input into a closed vessel, which is to be used as a chemical reactor. Calculate the mean residence time of fluid in the vessel. Tabulate & construct E Curve. (10)

t, min	0	5	10	15	20	25	30	35
C _{Pulse} g/l (tracer output concentration)	0	3	5	5	4	2	1	0

(b) Spherical solid particles containing 'B' are roasted at a constant temperature in an oven with a constant gas composition. Solids are converted to give a firm non non-flaking product according to the Shrinking core model (SCM). From the following conversion data, determine the rate-controlling mechanism for the transformation of solid. (10)

Data:

d _p ,mm	X _B	s t,s		
2	0.875	150		
1,20	The The	STI A		

Q.5. (a) The catalytic reaction $A \rightarrow 3R$ is run in a packed bed reactor at 3.5 atm & 115°C. It is desired to treat 1500 mol/hr of pure A at 3.5 atm to a 32 % conversion, the following rate concentration data are available:

C _A , Mol/l	0.04	0.06	0.075	0.09
-r _A , mol A/(h.kg catalyst)	3.5	5.7	7.2	8.8

Determine the amount of catalyst needed in a packed bed reactor. (10)

- (b) Write short notes on Packed Bed and Trickling Bed Reactor (10)
- Q.6. Answer the following questions. (Any four): (20)
 - a) Write a short note on the Tanks in Series model
 - b) Draw the kinetic regime for i) slow reactions, no mass transfer resistance.
 - ii) Instantaneous reaction with low C_B
 - c) Differentiate between Physical adsorption & Chemical adsorption.
 - d) Differentiate true density, apparent density and bulk density
 - e) Explain the Pulse input experiment for RTD measurement