University of Mumbai Examinations Commencing from Program: Chemical Engineering

Curriculum Scheme: Rev2019
Examination: TE Semester VI
Course Code:CHC601

Course Name: Mass Transfer Operation-II

Time: 2 hour 30 minutes Max. Marks: 80

T.E.(Chemical Engineering)(SEM-VI)(Choice Base Credit Grading System) (R-2020-21) ('C' Scheme) / 89241 - Mass

Transfer Operations -II DATE: 18/5/2022 QP CODE: 92282

01	Choose the correct option for following questions. All the Questions are
Q1.	compulsory and carry equal marks
1.	The significance of leaching in the extraction of aluminium is
Option A:	it helps removing the impurities like SiO2, Fe2O3 etc. from the bauxite ore
Option B:	it converts the ore into oxide
Option C:	it reduces melting point of the ore
Option D:	it eliminates water from bauxite
	2,46,6,6,7,4,4,6,64,8,66,6,7,7,6,6,
2.	A method to prepare absolute alcohol is
Option A:	vacuum distillation
Option B:	fractional distillation
Option C:	azeotropic distillation
Option D:	None of these
	\$ 6 9 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3.	As the reflux ratio in a distillation coloumn is increased from the minimum, the
Option A:	slope of the operating line in stripping section decreases.
Option B:	number of plates decreases very slowly first and then more and more rapidly.
Option C:	total cost first decreases and then increases
Option D:	liquid flow increases while the vapor flow decreases for a system.
AT TO CA	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4,7 7	In liquid-liquid extraction, the ratio of weight fraction of solute in the extract phase to that in the raffinate phase is called as
Option A:	The distribution coefficient.
Option B:	The separation factor
Option C:	The selectivity.
Option D:	The relative volatility.
COSING CO	
F 7 5.00	In the leaching operation, the exhausted solids phase is called as-
Option A:	The underflow
Option B:	The overflow.
Option C:	The extract.
Option D:	The raffinate.
2 2 6 F 30	P. C. T. T. C.
F 6. 7 6.	Fenske equation determines the
Option A:	maximum number of ideal plates
Option B:	height of the distillation column
Option C:	minimum number of theoretical plates.
Option D:	optimum reflux ratio.

Option A: I Option B: I Option C: I Option D: O	The simple distillation is also called as- Equilibrium distillation. Flash distillation. Differential distillation. Continuous rectification.
Option B: F Option C: I Option D: C	Flash distillation. Differential distillation.
Option C: I Option D: C	Differential distillation.
Option D: 0	
•	Continuous rectification.
0	
0	
8. <u>-</u>	is the temperature at which a gas-vapor mixture becomes saturated, when cooled at constant total pressure out of contact with a liquid.
	Dew point TO
_	Bubble point
Option C: I	Dry bulb temperature
_	Wet bulb temperature
	2.5.7.5.5.4.4.4.4.4.4.8.8.2.4.4.4.6.8.8.4.4.4.4.4.4.4.4.4.4.4.4.4.4
9. I	In reverse osmosis
Option A:	A porous membrane is used
Option B: 1	No membrane is required.
Option C: A	A semi permeable membrane is used.
Option D: S	Solvent moves to the solution side.
	A mixture of o-nitrophenol and p-nitrophenol can be separated by
Option A: s	sublimation
	crystallisation
Option C: s	steam distillation
Option D: c	chromatography
	888555555555444488458

Q2. (20 Marks)	Solve any Two out of Three.(10 marks each)
A	A mixture containing benezene and tolune with 40% benezene and 60% toluene is to be separated in fractionating column to give product containing 96% benezene and bottom product containing 95% toluene. Feed is a mixture of two-third vapour and one third liquid. Find the number of theoretical stages required if the reflux ratio of 1.5 times the minimum is used. (relative volatalty=2.5)
B	Explain break through curve for adsorption in fixed bed. Derive equation for length of unused bed(LUB).
	Experiments with decolourization of oil yielded the following equilibrium relationship $y = 0.5 x^{0.5}$ where $y = gm$ of colour removed /gm adsorbent $x = colour$ in oil/1000 gm colour free oil Calculate % colour removed if 100 kg of oil containing 1 part of colour per 3 parts of oil is agitated in two stages with 12.5 grams of adsorbent each.

Q3.	Solve any Two out of Three .(10 marks each)
(20 Marks)	
A	Derive and explain an expression for multistage countercurrent leaching.
	Calculate yield of MgSO ₄ .7 H ₂ O crystals when 1000 kg of saturated solution o
В	Solution of MgSO ₄ at 353 K (80°C) is cooled to 303 K (300°C)assuming 10%
	water is lost by evaporation during cooling.
	Nicotine(C) in water(A) solution containing 1% nicotine is to be extracted with
	kerosene(B) at 20°C. Water and kerosene are essentially insoluble.(a) Determine
	percent extraction of nicotine if 100 kg of feed solution is extracted once with
C	150 kg solvent.(b) Repeat for three theoretical stages with 50 kg solvent in each
	stage.
	x' kg C/kg A 0 0.001011 0.00246 0.00502 0.00751 0.00998 0.0204
	y' kg C/ kgB 0 0.000807 0.001961 0.00456 0.00686 0.00913 0.0187

Q4. (20 Marks)	Solve any Four out of Six .(5 marks each)
A	Explain properties required for ideal solvent in extraction.
В	Write a note on steam distillation.
С	Write a note on Electrodialysis.
D	Explain solubility curves for Crystalisation.
Е	Write a note Characteristics of adsorbents.
F B	Write a note on Ball man Extractor.