Paper / Subject Code: 31724 / Transport Phenomena

11/06/2025 TE CHEMICAL SEM-V C-SCHEME TP QP CODE: 10080342

Time: 3 Hours Marks:80

- N. B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions from remaining five questions.
 - (3) Assume suitable data if necessary.

Q. 1 Answer any five questions

(20)

- a) Interpret any two dimensionless numbers from analogous transport diffusivities.
- b) Explain Analogy between heat and mass transfer.
- c) Write the Navier-Stokes Equation and define the terms involved.
- d) Explain and write Fourier's law of heat conduction in three dimensional form.
- e) What is diffusion? What factors may cause diffusion to occur?
- f) What is molecular and convective flux, explain.

Q. 2

(a) Derive an expression for equation of continuity

(10)

(b) A copper wire 10 mm diameter and 4.6 m long has a voltage drop of 0.6 volts, find the maximum temperature in the wire if the ambient air temperature is 298.15 K and the heat transfer coefficient h is 32.37 W/m² K, Lorenz constant for copper = 223×10^{-8} volt² /K², Thermal conductivity of copper at 298.15 K = 384.1 W/m K (10)

Q. 3

a) Find the radius of capillary tube which is used to measure the rate of flow of viscous fluid flow through the tube. (10)

Given:

Length of capillary = 50.02 cm

kinematic viscosity of fluid = 4.03×10^{-5} m² sec⁻¹

Density of Fluid = $0.9552 \times 103 \text{ Kg/m}^3$

Pressure drop across capillary tube = 4.766 atm

Mass rate of flow through tube = 2.997×10^{-3} Kg/sec

b) A viscous fluid is in laminar flow in a slit formed by two parallel walls at a distance 2B apart. Derive a differential momentum balance and obtain an expression for distribution of momentum flux. What is the ratio of average to maximum velocity in the slit?

(10)

Paper / Subject Code: 31724 / Transport Phenomena

Q. 4

(a) An electric current of 200 Amp is passed through stainless steel wire having radius r = 1.26 mm and length L=91cm. The wire has a resistance of 0.126 Ω . The outer surface temperature T_w is held at 422.1 K. The average thermal conductivity is k = 22.5 W/m. K. Calculate the centreline temperature. (10)

(b) Derive an expression for conduction in an electrical heat source.

(10)

Q. 5

a) A value of $D_{AB} = 0.151$ cm²/sec has been found for the system CO_2 -air at 293K and 1atm. Calculate D_{AB} at 1500K by the following methods. a) Slattery Equations, b) Chapman Enskog Equation

Data: For non-polar gas pairs, b = 1.823, $(\Omega_{DAB})_{1500} = 0.734$, $(\Omega_{DAB})_{293} = 1.047$ (10)

b) Derive an expression for Diffusion with homogenous chemical reaction. (10)

Q. 6

a) A small capillary tube with an inside diameter of 2.2×10^{-3} m and length of 0.317 m is being continuously used to measure the rate of flow of liquid having density 990 kg/m³ and viscosity of fluid, $\mu = 1.13 \times 10^{-3}$ Pa.s. The velocity of liquid is 0.275 m/sec. Calculate the pressure drop. (08)

- b) Explain the temperature and pressure dependence of diffusivity. (06)
- c) Derive Fourier's law of conduction. (06)
