Paper / Subject Code: 31721 / Mass Transfer Operations -I

03/06/2025 TE CHEMICAL SEM-V C-SCHEME MTO-I QP CODE: 10084263

Duration: 3 hours

Total Marks: 80

N.	(ii) Answer any three questions from the rest. (iii) Assume suitable data wherever necessary.	, AS
Q 1	Answer the following	Mark
a.	Differentiate between molecular diffusion and eddy diffusion.	5
b.	Explain film theory with suitable diagram showing concentration profile showing concentration-distance curve.	5
c.	Explain the concept of equilibrium with the help of equilibrium distribution of solute between gas and liquid phase at constant temperature.	5
d.	Write a short note on properties of ideal solvent for gas absorption.	5
Q2 a.	Ammonia is diffusing through a stagnant gas film mixture of 33 %Nitrogen and 67% Hydrogen by volume. The total pressure is 205 KN/m 2 abs. temperature is 55 0 C. Calculate rate of diffusion of ammonia per m 2 through 0.5 mm thick film when concentration changes across the film from 10 % to 5% by volume ammonia. D $_{NH3-N2}$ = 0.196 cm 2 /sec., D $_{NH3-H2}$ =0.63 cm 2/sec.	10
b.	Derive the equations for steady state molecular diffusion of A into non-diffusing B and equimolar counter diffusion of A and B for laminar flow.	10
Q 3. a.	Compare Penetration theory and surface renewal theory of mass transfer.	10
b.	A large volume of pure gas B at 2 atm is flowing over the surface from which pure A is vaporizing. Liquid A completely wets the surface which is a blotting paper. Hence the partial pressure of A at the surface is vapour pressure of A at 298 K which is 0.2 atm. The $$ ky' has been estimated to be 6.78 X $10^{\text{-5}}$ kmol/m²sec mole fraction. Calculate N_A and ky.	10
Q 4 a.	A countercurrent plate absorber is to be installed for scrubbing an air mixture containing 5 % ammonia by volume. The scrubber is fed with water containing 0.002 mole ammonia per mole of water. The scrubbing water rate is 1 mole water per mole ammonia. It is required to absorb 85% of ammonia present in the gas by operating the absorber at 20 0 C. Y=0.8X. Calculate the concentration of ammonia in the outgoing liquid and number of stages required.	10
b.	With suitable diagram explain the calculation for minimum liquid gas ratio in absorption	10
842	Page 1 of 2	

- Q 5 a. In laboratory test, the rate of drying was found to be 0.5 X 10⁻³ kg/m²s when the moisture content reduced from 0.4 to 0.1 on dry basis. Critical moisture on dry basis is 0.08. A tray dryer is used for drying 100 kg of the same material on dry basis under identical conditions. The area of the material is 0.04 m2/kg of solid. Calculate the time required to reduce the moisture content from 0.3 to 0.2 on dry basis.

 - b. Draw and explain typical rate of drying curve under constant drying conditions showing 10 different regions of drying.
 - Q 6 Write short notes on any 4:

5 each

10

- A. adiabatic saturation temperature.
- B. comparison of packed and tray towers.
- C. Adiabatic saturation curve
- D. Diffusion through porous solid.
- E. Drum dryer

84263 Page 2 of 2