Paper / Subject Code: 31724 / Transport Phenomena

1T00535 - T.E.(Chemical Engineering)(SEM-V)(Choice Base Credit Grading System) (R- 19) (C Scheme) / 31724 - Transport Phenomena QP CODE: 10029603 DATE: 31/05/2023

(3 Hours) (80 Marks)

- N. B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions from remaining five questions.
 - (3) Assume suitable data if necessary.

Q. 1 Answer any four questions

(20

- a) Write down about Macroscopic and Microscopic approach of Transport Phenomena.
- b) Derive Newton's law of viscosity.
- c) Explain diffusion.
- d) Explain temperature and pressure dependence of thermal conductivity.
- e) Explain the terms: forced and free convection.

Q. 2

- (a) Derive an expression for flow of Newtonian fluid over an inclined plate. (10)
- (b) An electric current of 200Amp is passed through stainless still wire having radius r = 1.26 mm and length L=91cm. The wire has a resistance of 0.126Ω . The outer surface temperature T_w is held at 422.1K. The average thermal conductivity is k = 22.5 W/m. K. Calculate the centreline temperature. (10)

Q.3

(a) Derive an expression for conduction in composite wall.

(10)

(b) Estimate the viscosity of N_2 at 50°C and 854 atm, given M = 28 gm/gmole, $P_c = 33.5$ atm, and $T_c = 126.2$ K. (10)

Q. 4

(a) Derive an expression for conduction in electrical heat source.

(10)

- (b) Copper wire 10 mm diameter and 4.6 m long has a voltage drop of 0.6 volts, find the maximum temperature in the wire if the ambient air temperature is 298.15 K and the heat transfer coefficient h is 32.37 W/m² K
 - i. Lorenz constant for copper = $223 \times 10-8 \text{ volt}^2/\text{K}^2$
 - ii. Thermal conductivity of copper at 298.15 K = 384.1 W/m K. (10)

29603

Paper / Subject Code: 31724 / Transport Phenomena

Q. 5

- (a) Heavy oil is passed through a pipe of 5.08×10^{-2} m diameter. The pressure drop over the pipe is 68.958 kN/m². The viscosity of oil is 200 Cp and density is 800 kg/m³. The length of the pipe is 3.048 m.
 - i) Calculate the volumetric flow rate of oil in lit/min.
 - ii) Calculate and plot momentum flux profile across the pipe. (10)
- (b) Derive an expression for Diffusion through a stagnant gas film. (10)

Q. 6

- (a) The distance between two plate is 0.5 cm and $\Delta v_x = 10$ cm/sec, the fluid is ethyl alcohol at 273 K having a viscosity of 0.15 kg m/s, calculate the stress on each plate and the fluid velocity at 0.5 inch intervals from plate to plate. (08)
- (b) Write i) general momentum balance equation, ii) general procedure for setting up and solving viscous flow problems, and iii) boundary conditions. (06)
- (c) Explain the terms: convective and molecular transport of energy. (06)

29603 Page 2 of 2