Paper / Subject Code: 31724 / Transport Phenomena

1T00535 - T.E.(Chemical Engineering)(SEM-V)(Choice Base Credit Grading System) (R- 19) (C Scheme) / 31724 - Transport Phenomena QP CODE: 10040057 DATE: 1/12/2023

Duration: 3 Hours Marks: 80

N. B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions from remaining five questions.
- (3) Assume suitable data if necessary.

Q. 1 Answer any five questions

(20)

- a) Explain Analogy between heat and mass transfer.
- b) Explain rules for writing shell mass balances.
- c) Explain theories of thermal conductivity of gases and liquids in brief.
- d) Explain temperature and pressure dependence of thermal conductivity.
- e) Explain approach to solve heat transfer problems.

Q. 2

- (a) Derive the velocity profile for flow through a circular tube and find the momentum flux, average velocity and maximum velocity for flow through a circular tube. (10)
- (b) Heat is being generated uniformly by a chemical reaction in long cylinder of radius 91.44 mm. The generation rate is constant at 46.6 W/m³. The walls of the cylinder are cooled so that wall temperature is held constant at 311K. The thermal conductivity is 0.865 W/m K. Calculate the centreline temperature. (10)

Q. 3

(a) Derive an expression for heat conduction in composite wall. (10)

(b) Estimate D_{AB} for the non-polar system argon-oxygen at 293.2°K and 1 atm total pressure. Data given: $a = 2.745 \times 10^{-4}$, b = 1.823

Gas	M	Tc (°K)	Pc (atm)
A (Argon)	33.94	145.2	41.0
B (Oxygen)	29.00	149.4	43.7

(10)

(10)

0.4

- (a) Estimate the momentum flux for a system with lower plate having velocity of 1m/s.

 Distance between the two plates is 1 mm and viscosity is 1 cp. (10)
- (b) Derive an expression for conduction in electrical heat source.

40057

Page 1 of 2

Paper / Subject Code: 31724 / Transport Phenomena

Q. 5

- (a) Derive an expression for Diffusion with heterogeneous chemical reaction. (10)
- (b) An oil is flowing in laminar region in a 1.27×10^{-2} m diameter tube at the rate of 22.72 lit/min. The oil viscosity is 300 cp and its density is 960.9 Kg/m³.

Calculate:

- i) Pressure drop per metre of pipe length.
- ii) The wall stress, N/m²
- iii) The velocity at the centre of the tube.

Q. 6

(a) The distance between two plate is 0.5 cm and $\Delta v_x = 10$ cm/sec, the fluid is ethyl alcohol at 273 K having a viscosity of 0.0177 gm/cm s. Calculate the shear stress and velocity gradient. (10)

(10)

- (b) Explain the analogy between momentum, heat and mass transport. (05)
- (c) Explain the shear stress versus shear strain graph for Newtonian and Non-Newtonian fluids. (05)

40057