Paper / Subject Code: 40323 / Numerical Method in Chemical Engineering

1T00534 - S.E.(Chemical Engineering)(SEM-IV)(Choice Based)(R-20-21) (C Scheme) / 40323 Numerical Method in Chemical Engineering

QP CODE: 10029343 DATE: 15/05/2023 Time: 3 Hrs.

N.B.: 1) Question No.1 is compulsory

- 2) Answer any three questions from remaining questions
- 3) Assume data if necessary and specify assumptions clearly
- Q.1 Solve the following using gauss elimination method 8x + 4y - z = 11 -2x + 5y + z = 4 2x - y + 6z = 7

5 marks

Marks: 80

- Derive Newton Raphson's formula by using Taylor series expansion. b)
- [5 marks]

Explain different types of errors in detail c)

- [5 marks]
- Solve the boundary value problem $u_t = u_{xx}$ under the conditions u(0,t) = u(1,t) = 0[5 marks]
 - $u(x,0) = \sin \pi x$, $0 \le x \le 1$ using Bender Schmidt Method for two time steps. (Take
- Q.2 B carried out in a batch reactor governed by Consider a reaction A —

[10 marks]

$$\frac{\mathrm{dCa}}{\mathrm{dt}} = -kCa$$

The initial conditions are: at t=0, Ca=1 mol/m³. The rate constant (k) is 1 s^{-1} . Using Runge-Kutta forth order method, determine the concentration of A at 2 s.(take step size as 1).

i) Find the root of the equation $x^2 - 4x - 10 = 0$ using Secant method up to two iterations.

[5 marks] [5 marks]

ii) Solve using Runge-kutta second order method

$$\frac{dy}{dx} = 1 - 2xy$$

y(0)=0, Take step size h=0.2 find y(0.4)

The spherical storage tank containing oil has a diameter of 6 ft. Calculate the height h to which a dipstick 8 ft long would be wet with oil when immersed in the tank when it contains 4 ft3 of oil. The equation that gives the height, h, of the liquid in the spherical tank for the given volume and radius is given by $V = \frac{3\pi h^2(3r-h)}{9}$, Use the Bisection Method to find the height (h), to which the dipstick is wet with oil.

[10 marks]

Find by Newton Raphson's method, the real root of the equation $3x = \cos x + 1$ by [10 marks] taking initial guess 0.5

Q.4 a) The temperature of a metal strip was measured at various time intervals during [10 marks] heating and the values are given in the table. If the relationship between temperature T and time t is of the form

$$T = be^{t/4} + a$$

Time t (min)	Temperature T (⁰ C)
1	70
2	83
3	100
4	124

Find the temperature at t = 6 minute.

b) Solve the following equations using Gauss-Jordan Method x + y + z = 9; 2x - 3y + 4z = 13; 3x + 4y + 5z = 40

- Q.5 a) Evaluate $\int_0^1 \frac{dx}{1+x}$ by applying
 - $\frac{dx}{dx}$ by applying [10 marks]
 - 1. Trapezoidal rule
 - 2. Simpson's (1/3)rd rule
 - 3. Simpson's (3/8)th rule
 - b) Find the value of y(4) and y(5) using finite differences for following equation: [10 marks]

$$\frac{d^2y}{dt^2} = 0$$

Where, y(2) = 0.33 and y(3) = 0.48

Q.6 a) Solve the following by Gauss-Seidel method

$$10x + y + z = 12$$

$$2x1 + 10y + z = 13$$

$$2x + 2y + 10z = 14$$

b) The change in velocity of a moving particle is given by the following [10 marks] equation $\frac{dv}{dt} = 0.025v^2 - 5t$

Where v is in m/s and t is in seconds. If at t=0, v= 5 m/s. by using Euler's method find v(1.5). (take step size as 0.25)