1T00534 - S.E.(Chemical)(Choice Base) (R-2020-21 'C' Scheme) Semester - IV / 40323 - Numerical Method in Chemical

Engineering

DATE: 23/5/2022 University of Mumbai QP CODE: 93401

Program: Chemical Engineering Curriculum Scheme: 2019 Examination: SE Semester IV

Course Code: CHC403 and Course Name: **Numerical Method in Chemical Engineering**Time: 2 hour 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks								
1.	Trapezoidal formula is also known as								
Option A:	Simpson's rule								
Option B:	Co-ordinate method								
Option C:	Prismoidal method								
Option D:	Average end area method								
	20,43,80,00,00,00,00,00,00,00,00								
2.	Root of the equation x ³ -x-1 lies between:								
Option A:	2 and 3								
Option B:	0 and 1								
Option C:	3 and 4								
Option D:	1 and 2								
3.	General form of second order partial differential equations is Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane if								
Option A:	$B^2 - 4AC = 0$								
Option B:	B ² - 4AC <0								
Option C:	B^2 - 4AC >0								
Option D:	B ² - 4AC =constant								
.67									
4.	The Gauss-Seidel method is applicable to strictly diagonally dominant or								
27.6	symmetric positive definite matrices because in this case								
Option A:	convergence is possible								
Option B:	error is less								
Option C:	solution is stable / S S S S S S S S S S S S S S S S S S								
Option D:	solution is unstable								
78553	Equation for Straight line curve fitting is								
Option A:	y=a+bx								
Option B:	$y=a+bx^2+c$								
Option C:	$y=a+bx^2+cx^3$								
Option D:	$y=ax+bx^2+cx^3+d$								
000000									
6.	The differential equation with more than one independent variable is called								
Option A:	An Ordinary Differential Equation								
Option B:	Partial Differential Equation								
Option C:	Simultaneous Equation								
Option D:	Simple Equation								
0,0,0,0,0,0	79/9								

7.	In general the ratio of truncation error to that of round off error is						
Option A:	2:1						
Option B:							
Option C:							
Option D:							
8.	y(x+h) = y(x) + h f(x,y) is referred as method.						
Option A:	Euler						
Option B:	Modified Euler						
Option C:	Taylors series						
Option D:	Runge kutta method						
9.	Which of the following is one dimensional wave equation?						
Option A:	$\partial^2 \mathbf{u} / \partial \mathbf{t}^2 = \mathbf{C}$						
Option B:	$\partial^2 \mathbf{u} / \partial \mathbf{t}^2 = \mathbf{C} \partial \mathbf{u} / \partial \mathbf{x}$						
Option C:	$\partial^2 \mathbf{u} / \partial \mathbf{t}^2 = \mathbf{C}^2 \partial \mathbf{u} / \partial \mathbf{x}$						
Option D:	$\partial^2 \mathbf{u} / \partial t^2 = \mathbf{C}^2 \partial^2 \mathbf{u} / \partial \mathbf{x}^2$						
10.	The augmented matrix in Gauss Jordan method is reduced to						
Option A:	Row Echelon form						
Option B:	Column Echelon form						
Option C:	Matrix Echelon form						
Option D:	Augmented form						

2	Solve any Two Questions out of Three 10 marks each
A	Explain types of Error and differentiate between Accuracy and precision.
	Solve the system of equation by Gauss Seidel method, correct to three decimal places.
В	x + y + 54 z = 110
325	$27 \times -6 y - z = 85$
300 F30	6x + 15y + 2z = 72
22,000	A mass balance for a chemical in a completely mixed reactor can be written as
	$V(dc/dt) = F - Qc - kVc^2$
CS	where $V = \text{volume } (14 \text{ m}^3)$, $c = \text{concentration } (g/m^3)$, $F = \text{feed rate } (200 \text{ g/min})$,
	Q = flow rate (1 m ³ /min), and k = a second-order reaction rate (0.12 m ³ /g/min).
1.00 3 3 5 5 C	If $c(0) = 0$, solve the ODE until $t = 3$. Use the Runge Kutta 4^{th} order method (h =
	0.5)

3.	Solve any Two Questions out of Three				10 marks each			
60	Calculate straight line (y=a+bx) using Least square method							
965	X	1996	1997	1998	1999	2000		
A	Y	40	50	62	58	60		

	The spherical storage tank containing oil has a diameter of 6 ft. Calculate the height								
В	h to which a dipstick 8 ft long would be wet with oil when immersed in the tank								
	when it contains 4 ft3 of oil. The equation that gives the height, h, of the liquid in the								
	spherical tank for the given volume and radius is given by $V = \frac{3\pi h^2(3r-h)}{9}$. Use the								
	Bisection Method to find the height (h), to which the dipstick is wet with oil.								
	Solve by LU Decomposition Method								
С									
	[25 5 1 64 8 1 144 12 1								

Q4.	Solve any	Two Questic	10 ma	rks each						
A	Solve follo	Solve following PDE by using bender schmidt method								
	$\partial^2 u \partial u$									
	$\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0 \text{ subject to } u(0,t) = 0 \text{ and } u(5,t) = 0, u(x,0) = x^2(25-x) \text{ take he upto 3 seconds.}$									
В		Find by Liebmann's method the values at the interior lattice point of a								
	(A A) 1 T	square region of the harmonic function u whose boundary values are as								
	shown in fig.									
	222	9.	. (/							
7	4 4 6 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	0	1.1 17.0	19.7	18.6					
5	OF BURE	0	u1	u2 u3	21.9					
	5555			NO. 20 100 200	21.9					
20,000		0	u4	u5 u6	21.0					
			u7	u8 u9	17.0					
					17.0					
39,000		8.7	12.	1 12.8	9.0					
8 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		8.7	12.	1 12.0						
2,00,000		19 A A A A A A A A A A A A A A A A A A A	333							
3 10 0 C 0 0 5	Find solution using Trapezoidal and Simpsons 1/3 rule									
22322000	XX	1.45	1.6	1.8	2.0	2.2				
22223222	2000	6 13 16 34								
	F(x)	4.0552	4.9530	6.0436	7.3891	9.0250				
	000000	5000								
	50000000000000000000000000000000000000	3,001								