S.E.(Chemical)(Choice Base) (R-2020-21 'C' Scheme) Semester - IV / 40321 - Engineering

Mathematics-IV DATE: 17/5/2022 QP CODE:91127

Examinations Summer 2022

Program: CHEMICAL Engineering Curriculum Scheme: Rev2019 ©

Examination: SecondYear (SE), Semester-IV

Course Code: CHC401 and Course Name: Engineering Mathematics-IV

Time: 2hour 30 minutes Max. Marks: 80

	Choose the correct option for following questions. All the Questions are				
Q1.	compulsory and carry equal marks				
1.	If \vec{f} is a vector point function such that $\nabla \cdot \vec{f} = 0$ then \vec{f} is called as				
Option A:	Non – Solenoidal				
Option B:	Solenoidal				
Option C:	Irrotational				
Option D:	Rotational				
2.	Range of Spearman's Rank correlation coefficient is				
Option A:	R > 1				
Option B:	R can take any real value				
Option C:	$-1 \le R \le 1$				
Option D:	R < -2				
3.	The distance between z_0 and the nearest singularity of $f(z)$ is called as				
Option A:	Radius of Convergence				
Option B:	Circle of Convergence				
Option C:	Singular Point				
Option D:	Circle of Convergence				
4.	A random variable X has probability distribution				
	X: 1 2 3 4 5 6				
,	P(X=x): 5k 3k 2k 7k 5k 12k				
Oution 4	The value of the k is				
Option A:	2				
Option B:					
Option B.	34				
Option C:	13 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
8 5 6 6 6	134 CE E E E E E E E E E E E E E E E E E E				
Option D:					
33333	34 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				
2222					
5.76	The Sample size $n \ge 30$ (for any population) Population Standard Deviation is known				
77000	then which test should be used				
Option A:	t-test				
Option B:	Z – test				
Option C:	Chi – test				
Option D:	f = test				
3 20 00 00					
6.	The Sample size $n \le 30$ (for any population) Population Standard Deviation is unknown				
2000	then which test should be used				
Option A:	t – test				
Option B:	Z = test				
Option C:	Ki square — test				
Option D:	f-test				
D. O. O. V. 60' U					

7.	If Contingency table has r rows and columns the degrees of freedom is given by
Option A:	$d.f. = (r-1) \times (c-1)$
Option B:	$d.f. = (r-2) \times (c-1)$
Option C:	$d.f. = (r-3) \times (c-3)$ $d.f. = (r-1) \times (c-2)$
Option D:	$d.f. = (r-1) \times (c-2)$
8.	If calculated value of Ki square $-$ test is greater than the table value the hypothesis is
Option A:	Accepted
Option B:	Standard Deviation known
Option C:	Standard Deviation unknown
Option D:	Rejected
9.	The regression lines of a sample are given by $x + 6y = 6$, $3x + 2y = 10$ find \bar{x} and \bar{y}
Option A:	$ \bar{x}=3 \text{ and } \bar{y}=\frac{1}{2}$
Option B:	$\bar{x} = 50$ and $\bar{y} = 50$
Option C:	$\bar{x} = 30$ and $\bar{y} = 40$
Option D:	$\bar{x} = 30$ and $\bar{y} = 45$
10.	Find $E(X)$ if X has the following Probability Density Function
	$f(x) = \frac{4}{3}x(x-2), 0 \le x \le 2$
Option A:	E(X) = 2
Option B:	E(X) = 4
Option C:	E(X) = 1
Option D:	E(X)=3
-	

Q2	Solve any Four out of Six5 marks each(4 x 5 = 20)					
A	If $\emptyset = x^3 + y^3 + z^3 - 3xyz$ find $\operatorname{div} \bar{F}$ and $\operatorname{curl} \bar{F}$ where $\bar{F} = \nabla \emptyset$					
B	Evaluate $\int_0^{1+i} (x^2 + iy) dz$, along the path (i) $y = x$, (ii) $y = x^2$, is the line integral independent of path?					
	Calculate Karl Pearson's coefficient of Correlation for the following bivariate series. X 23 27 28 29 30 31 33 35 36 39					
D	There are 11 tickets in a box bearing numbers 1 to 11. Three tickets are drawn one after the other without replacement. Find the probability that they are drawn in the order bearing (i) even, odd, even number, (ii) odd, odd, even number.					
	Fit a Poisson distribution to the following data x 0 1 2 3 4					
E E	y 123 69 14 3 1					
	The 300 digits were chosen at random from a table of random numbers. The frequency of digits was as follows					
	Digit 0 1 2 3 4 5 6 7 8 9 Total					
	Frequency 28 29 33 31 26 35 32 30 31 25 300 Using <i>Ki square – test</i> examine the hypothesis that the digits were distributed in equal numbers in the table					

Q3	Solve any Four out of Six 5 marks each $(4 \times 5 = 20)$								
A	Find the total work done in moving a particle in the force field $\overline{F} = 3xyi - 5zj + 10xk$ along $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from $t = 1$ to $t = 2$								
В	Evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)(z-1)} dz$ where C is the circle $ z = 4$.								
С	Calculate Spearman's coefficient of rank Correlation form the data on height and weight of eights students. X 53 98 95 81 75 61 59 55 Y 47 25 32 37 30 40 39 45								
D	Find the normalizing factor, k if the following function is a probability density function $f(x) = k(1-x^2), 0 < x < 1$ Also find $P(0.1 < x < 0.2)$ and $P(x > 0.5)$								
Е	For a normal variate with mean 2.5 and standard deviation 3.5, find the probability that (i) 2 $\leq x \leq$ 4.5, (ii) $-$ 1.5 $\leq x \leq$ 5.5								
F	The number of car accidents in a metropolitan city was found to be 20, 17, 6, 7, 15, 8, 5,16 and 14 per month respectively. Use <i>Ki square</i> – <i>test</i> to cheek whether these frequencies are in agreement with the belief that occurrence of accidents was the same for 10 months period. Test at 5%level of significance.								

Q4	Solve any Four out of Six5 marks each $(4 \times 5 = 20)$								
A	Evaluate by Green's Theorem $\int \overline{F} \cdot dr$ where $\overline{F} = x^2i - xyj$ over the region of triangle having vertices $A = (0,2), B(2,0)$ and $C(4,2)$								
В	Evaluate the following integral by Cauchy's residue theorem $\int_C \frac{z^2}{(z-1)(z-2)} dz, whre \ c \ is \ the \ circle \ z = 2.5 \ .$								
	Find th	e lines of regress	ion for the fol	lowing data					
C	x	\$ 2.5 2.0	7.9	8	9 10	11			
SE ES	y		4 14	15	12 17	16			
10 C	A discrete random variable has the probability density function given below								
	x	-2	35,85,0 21,55,85,0	0 1	2	3			
De al si	Y Sy	0.2	ko o	0.1 2k		2k			
E E	Nine ite 45, 47,	Mean and Varian ems of a sample l 50, 52, 48, 47, 49 ne mean of 9 ite 7.5?	nad the follow 0, 53, 51		m the assumed	l populat			
	inocula in the fe	tches of 12 animated and the other ollowing table for e against the discon)	was not. The r both cases. (number of de Canthe inocula	ad and survivination be regard nce (make Yat	ng are giv ed as			
20 × 0 × 0		Inoculated	2	10	12				
0,000	The state of the s								
	182 A 70 C	Not - Inoculate	ed 8	4	12				