Paper / Subject Code: 50725 / Process Calculations

1T00533 - S.E.(Chemical Engineering)(SEM-III)(Choice Base Credit Grading System) (R- 19) (C

Scheme) / 50725 - Process Calculations

QP CODE: 10041220 DATE: 02/12/2023 [Total Marks: 80]

- N.B. (i) Question number 1 is compulsory.
 - (ii) Answer any three questions from rest.
 - (iii) Assume suitable data wherever necessary.
- Q. 1 (A) Discuss recycle and purging operations. [05]
 - (B) Define the terms percent conversion, yield, selectivity and limiting reactant. [05]
 - (C) Calculate the standard heat of formation of liquid methanol. [05]
 - Std. Heat of combustion of methanol = -726.55 kJ/kmol
 - Std. Heat of formation of gaseous $CO_2 = -393.51 \text{ kJ/kmol}$
 - Std. Heat of formation of liquid $H_2O = -285.84 \text{ kJ/kmol}$
 - (D) Calculate the equivalent weights of the following compounds
 (i) H₃PO₄ (ii) CaCl₂ (iii) NaOH (iv) Na₂CO₃ (v) H₂SO₄
- Q. 2 (A) Show that: Pressure % = Mole %
 - (B) To prepare 0.5 litre of 1 normal, 1 molar and 1 molal solution of H₂SO₄ with the density of H₂SO₄ solution to be 1.075 g/cm³, calculate the amounts of H₂SO₄ required for each solution.
- Q. 3 (A) A gaseous mixture has the following composition by volume: $CO_2 = 8\%, CO = 14, O_2 = 6\%, H_2O = 5\% CH_4 = 1\% \text{ and } N_2 = 66\%$ Calculate (i) the average molecular weight of the gas mixture and (ii) the density of the gas mixture at 303 K and 101.325 kPa.
 - (B) The dilute acid containing 25% H₂SO₄ is concentrated by commercial grade sulphuric acid containing 98% H₂SO₄ to obtain desired acid containing 65% H₂SO₄. Find the quantities of the acids required to make 1000 kg of desired acid.
- Q. 4 (A) An evaporator system concentrating a weak liquor from 5% to 50% solids handles 100 kg of solids per hour. If the same system is to concentrate a weak liquor from 4% to 35%, find the capacity of the system in terms of solids that can be handled per hour assuming water evaporation capacity to be same in both the cases.
 - (B) In production of chlorine gas by oxidation of hydrochloric acid gas, air is used 30% in excess of that theoretically required. Based on 4 kmol HCl, calculate: (a) Weight ratio of air to hydrochloric acid gas in feed. (b) If oxidation is 80% complete, find the composition of product stream on mole basis.
- Q. 5 (A) A coke is known to contain 90% carbon and 10% non-combustible ash (by weight): [10]
 - (i) How many moles of oxygen are theoretically required to burn 100 kg of coke completely?
 - (ii) If 50% excess air is supplied, calculate the analysis of gases at the end of combustion.
 - (B) Obtain an empirical equation for calculating the heat of reaction at any temperature [10] T(in K) for the reaction:

$$CO_{(g)} + 2H_{2(g)}$$
 CH₃OH_(g)

Data: $\Delta H_R^0 = -90.41 \text{ kJ/mol}$

$$C_p^{o} = a + bT + cT^2 + dT^3$$
, kJ/(kmol.K)

Component	a	b	C C	d
$CO_{(g)}$	29.0277	-2.8165×10^{-3}	11.6437×10^{-6}	-4.7063×10^{-9}
$H_{2(g)}$	28.6105	1.0194×10^{-3}	-0.1476×10^{-6}	0.769×10^{-9}
CH ₃ OH _(g)	21.137	70.843×10^{-3}	25.86×10^{-6}	-28.497×10^{-9}

Q. 6 (A) The gas having the following composition at temperature of 775 K: $SO_2 = 7.09\%$, $O_2 = 10.55\%$, $SO_3 = 0.45\%$ and $O_2 = 81.91\%$ Calculate the heat content of 1 kmol gas mixture over 298 K using the heat capacity data given below:

 $C_p^{\ o} = a + bT + cT^2 + dT^3, \ kJ/(kmol.K)$

Gas	a	b*10 ³	c*10 ⁶	d*109
SO_2	24.7706	62.9481	-44.2582	11.122
O_2	26.0257	11.7551	-2.3426	-0.5623
SO_3	22.0376	121.624	-91.8673	24.3691
N_2	29.5909	-5.141	13.1829	-4.968

(B) A dryer is used to dry 100 kg/h wet solids from 20% to 1% moisture by weight by hot air. Fresh air containing 0.02 kg water vapour per kg dry air is available at 303 K and 101.325 kPa. Air leaving the dryer is found to contain 0.1 kg water vapour per kg dry air. If recycle ratio is maintained at 3 kg dry air in recycle air per kg dry air in fresh air, calculate the volumetric flow rate of fresh air assuming molecular weight of fresh air to be 28.8.

[10]

