University of Mumbai Examination Summer 2022

Program: Chemical Engineering Curriculum Scheme: Rev 2019 Examination: SE Semester III

Course Code: CHC305 and Course Name: Process Calculations

Time: 2 hours 30 minutes	Max. Marks: 80

Q1.	Choose the correct option for the following questions. All the questions are compulsory and carry equal marks.
1.	A sample of copper weighing 6.93×10^{-3} kg contains how many moles of copper atoms? (Atomic mass of copper = 63.5)
Option A:	9.17 mol
Option B:	0.917 mol
Option C:	0.109 mol
Option D:	1.09 mol
2.	100 moles of O ₂ is added to 50 moles of H ₂ , how many moles of H ₂ O will it
	produce?
Option A:	
Option B:	
Option C:	
Option D:	200
3.	of desired product is the ratio of limiting reactant consumed to produce desired product to the limiting reactant consumed totally.
Option A:	Yield
Option B:	Selectivity
Option C:	Conversion
Option D:	% Conversion
3 4.00	gms of HCl needed to prepare 3 litres of 2 N HCl solution.
Option A:	219 gm
Option B:	146gm
Option C:	365 gm
Option D:	912gm
5.	Selectivity of desired product is the ratio of moles of to the moles of undesired product produced.
Option A:	limiting reactant consumed to produce undesired product
Option B:	limiting reactant consumed totally
Option C:	desired product produced
Option D:	excess reactant consumed totally

6.	A reaction has reactants 4 moles of NaOH and 2 mole of H ₂ SO ₄ , and products
	Na ₂ SO ₄ and H ₂ O, what are the total moles of products?
Option A:	
Option B:	
Option C:	
Option D:	
7.	A system in which no condition vary with time is called
Option A:	Open system
Option B:	Closed system
Option C:	Steady state system
Option D:	Unsteady state system
8.	1 calorie = 4.184×10^{-3}
Option A:	kJ 85282825555555
Option B:	
Option C:	Cal (5,525,555,555,555,555,555,555,555,555,5
Option D:	Kcal
9.	Heating value is the negative of the
Option A:	Standard Heat of Combustion
Option B:	Standard Heat of Reaction
Option C:	Standard Heat of Formation
Option D:	Heat of Formation
•	\$ 8 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
10.	In by-pass operations a fraction of the feed stream to a process unit is diverted around and combined with the stream from the unit.
Option A:	Recycle
Option B:	Fresh S S S S S S S S S S S S S S S S S S S
Option C:	Output
Option D:	Purge S S S S S S S S S S S S S S S S S S S
3.2. 2. 2. C	A SS
2000 S S S S	
7.80.00	8888888888 888888888888888888888888888

$ \mathcal{Q}_{2} $	Solve any Two out of Three 10 marks each
\$ 5 5 E	A gas mixture contains 0.3 kmol of HCl, 0.4 kmol of N ₂ and 0.1 kmol of
	O ₂ . Calculate,
8 6 10 8 8	(i) Average molecular weight of gas,
	(ii) Volume occupied by this mixture at 504.3 kPa and 573 I (300°C).
15 F - 2 6 5	Nitrogen is to be marketed in cylinder having volume of 0.1 m ³ each
2	containing 3.5 kg of nitrogen. Calculate the pressure for which cylinders
8 8 6 6 75 F	must be designed if they are subjected to a maximum temperature of 323K
0,63,83,6	7,000 kg of wet solids containing 70 % solids by weight are fed to a tra
	dryer where it is dried by hot air. The product finally obtained is found t
	contain 1% moisture by weight. Calculate: (a) The kg of water remove
	from wet solids, (b) The kg of product obtained.

Q3	Solve any T	wo out of Thr	ee		× 55510	marks ea	
	An evaporate	or is fed with	90,000kg/	hr of a solu	ition containin	g 10% N	
	15% NaOH	and rest water	. In the or	peration, wa	iter is evapora	ted and N	
1		ed as crystals.		4 1 0 7		C SC DX OY	
		4% NaCl and			: (a) kg/h wate	r evapora	
		precipitated, (c			\$100 ST \$100 ST	STO OF	
		nining 75 mol					
2		product stream	<u> </u>	1.6	s found to con	itain 2 m	
		A. Reaction taking place is : 2A + B → C Find the percentage of original 'A' getting converted to C.					
						9200	
		ontaining 60% containing 8%			4 . V	A-Y A	
	_	pour per kg d				43 45	
3		per kg dry air					
		(dry) is 100 k					
	_	r recirculated,	Z (/ - /) W	CT			
	indention of di	£ 5 8 2	5550	201200		3232	
Q4	Solve any T	wo out of Thr	ee	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 8 8 10	marks ea	
		s has the follow		osition on 1	mole basis:	SP,	
	$CH_4 = 84\%$	$C_2H_6 = 13 \% a$	and $N_2 = 3$	%.			
	Calculate the heat to be added to heat 10 kmol of natural gas from 298 K						
		523 K using the heat capacity data given below:					
1		$Cp^{o} = a + bT + cT^{2} + dT^{3}, kJ/(kmol.K)$					
	Gas	A - VI 4 1 A - / Y /	0×10^3	c x10 ⁶	d x 10 ⁹		
	CH ₄		52.11	11.97	-11.32	-	
	C ₂ H ₆		78.08	-67.37	8.71	-	
	N ₂	7 0/1/4/1/1/4	5.14	13.18	-4.97	1	
Š		10,000 kg/hr of methanol liquid at a temperature of 303 K is obtained					
SPE		removing heat from saturated methanol vapour. Find the amount of hea					
2	be removed in this case. Data: Bailing point of methanol = 337.8 K						
		Data: Boiling point of methanol = 337.8 K Latent heat of condensation of methanol = 1101.7 kJ/kg					
2000			011010		/ M/Kg		
8 8 3 5 6		Specific heat of methanol = 2.72 kJ/(kg.K) A natural gas has the following composition on mole basis:					
828883	$CH_4 = 76\%$, $C_2H_6 = 17\%$ and $N_2 = 7\%$.						
	Calculate the heat to be added to heat 500 kg of natural gas from 311						
	533 K.						
	Data: C _{pm} ° v	Data: C _{pm} ° values in kJ/(kmol.K)					
	Gas	C _{pm} o		Cpmo			
		(311-298 K	(53 (53 c)	33-298 K)			
288,0823	CH ₄	36.05		41.78			
	C_2H_6	53.52		67.49			
42226	N ₂	29.13		29.36			