Paper / Subject Code: 50721 / Engineering Mathematics - III

1T00533 - S.E.(Chemical Engineering)(SEM-III)(Choice Base Credit Grading System) (R- 19) (C Scheme) / 50721 - Engineering Mathematics - III

QP CODE:10011432

[Time: 3 Hours]

DATE: 21/11/2022.

[Marks:80]

Please check whether you have got the right question paper

N.B: 1. Question.No.1 is compulsory.

- 2. Solve any three questions from the remaining questions.
- 3. Non programmable calculator is allowed.

Q.1 a) Find Laplace transform of
$$f(t) = e^{4t} (sin^3 3t + cosh^3 3t)$$
 (05)

b) Find half range cosine series of
$$f(x) = \sin x$$
 in the interval $(0, \pi)$. (05)

Show that the Eigen values of
$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
 is of unit modulus. (05)

d) Test whether the function
$$f(x) = ize^{-iz}$$
 is analytic? (05)

- Q.2 a) Show that the function $u(x,y) = 3x^2y + 2x^2 y^3 2y^2$ is harmonic and hence find (06) its conjugate harmonic function.
 - b) Solve $\frac{\partial^2 u}{\partial x^2} 16 \frac{\partial u}{\partial t} = 0$ subject to the condition u(0, t) = 0, u(1, t) = 3t, u(x, 0) = 0, $0 \le x \le 1$, Taking h = 0.25 upto 3 seconds only by using. Bender-Schmidt method.

c) Find a)
$$L^{-1}\left\{\frac{5s^2-7s+17}{(s-1)(s^2+4)}\right\}$$
 b) $L^{-1}\left\{tan^{-1}\left(\frac{2}{5}\right)\right\}$ (08)

Q.3 a) If
$$A = \begin{bmatrix} y & y \\ y & y \end{bmatrix}$$
, prove that $e^A = e^y \begin{bmatrix} coshy & sinhy \\ sinhy & coshy \end{bmatrix}$ (06)

- b) Find the Fourier series of $f(x) = 2x x^2$ in the interval (0, 3), hence deduce that $\frac{\pi^2}{6} = \frac{(06)^2}{100}$.
- Find the solution of one dimensional heat flow is given by $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ for which $u(0,t) = 0, u(l,t) = 0, u(x,0) = 100 \frac{x}{l}$.
- Q.4 a) Using convolution theorem, find the inverse Laplace transform of $f(s) = \frac{s+29}{(s+4)(s^2+9)}$ (06)
 - Test whether the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is similar to a diagonal matrix, if yes, write the diagonal matrix.

11/132

Paper / Subject Code: 50721 / Engineering Mathematics - III

QP CODE:10011432

- c) Find the Fourier series of $f(x) = 1 + \frac{2x}{\pi}$, $-\pi < x < 0$ $= 1 \frac{2x}{\pi}, 0 < x < \pi$ and hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ (08)
- Q.5 a) Use the separation of variables techniques to solve $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$ (06) with $u(x, 0) = 4e^{-x}$
 - b) Evaluate $\int_0^\infty e^{-3t} t^2 \sinh 2t dt$. (06)
 - c) Verify C H theorem for $A = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ and evaluate $2A^4 5A^3 7A + 6I$. (08)
- Q.6 a) Find the Fourier series of $f(x) = \left(\frac{\pi x}{2}\right)^2$ in $0 \le x \le 2\pi$. (06)
 - b) Find the orthogonal trajectories of the family of curves $x^4 6x^2y^2 + y^4 = c_1$ (06)
 - c) If $u v = \frac{\cos x + \sin x e^{-y}}{2(\cos x \cosh y)}$ and $f(\pi/2) = 0$ then determine the analytic function (08) f(z) = u + iv