

(16) T-E-BM/V/CBGS/BDSP

QP Code: 3355

(3 Hours)

[Total Marks:80

Question No.1 is compulsory. N.B. :

- Assume any three questions form remaining five questions.
- Assume any data if necessary. Mention clearly the same (3)
- Check whether the following signals are Energy or Power signals. (a)

(i)
$$x(n) = \left(\frac{1}{3}\right)^n u(n)$$

(ii)
$$x(n) = \sin\left(\frac{\pi}{9}n\right)$$

Determine if the following systems are time invariant (b)

(i)
$$y(n) = x\left(\frac{n}{2}\right)$$

(ii)
$$y(n) = nx^2(n)$$

- Find the relationship between the Z-transform and DTFT (c)
- Prove the linearity property of the DFT (d)
- Find the Fourier Transform of (e)

$$x(n) = \left(\frac{1}{2}\right)^{|n|}$$

Compute the Z-transform of the signal (a)

$$x(n) = \{1, 2, 3, 4, 5, 6\}$$
 specify the ROC

Compute x(n) if

$$x(z) = \frac{1 + 3z^{-1}}{1 + 3z^{-1} + 2z^{-2}} \quad |z| > 2$$

Prove the convolution property of the Z-transform

[TURN OVER

JP-Con.: 11317-15.

2915

BM/I/CBGS/BD

10

10

QP Code: 3355

2

3.	(a)	Realize the system give	n by
----	-----	-------------------------	------

H(z) =
$$\frac{1-z^{-1}}{1-0.2^{-1}-0.15z^{-2}}$$

using:

- (i) Cascade form
- (ii) Parallel form

(b) Determine linear convolution of
$$x(n) = \{1, 5, 6, 2, 3\}, h(n) = \{-1, 1, 1\}$$

(c) Perform circular convolution of
$$x_1(n) = \{1, 4, 6, 8\}, x_2(n) = \{3, 5, 7\}$$

- 4. (a) Develop a 8-point DIT-FFT algorithm and Draw the Butterfly diagram
 - (b) Given the DFT, compute the IDFT using the DIT-FFT $X(k) = \{10, -2, +2i, -2, -2, -2i\}$
 - (c) What are the number of Multiplications required to compute a N-point DFT and how many Multiplications are required if the same is computed using the FFT algorithm
- 5. (a) Find the output y(n) of a filter whose impulse response is $h(n) = \{1, 1, 1\}$ and input signal is $x(n) = \{3, 2, 4, -1, 0, 6, 2, 3, -1, -2\}$ use overlap and add method
 - (b) By means of DFT, IDFT method only determine $x_3(n) = x_1(n) \otimes x_2(n)$ where $x_1(n) = \{1, 2, 3, 4\}, x_2(n) = \{1, 1, 2, 2\}$
 - (c) Explain any one Application of DSP in Biomedical engineering
- 6. (a) A low pass FIR filter is to be designed with the following specification $H(e^{j\omega}) = 1$ $-0.3\pi \le |\omega| \le 0.3\pi$

Use a rectangular window of length N = 6

- (b) Determine H(Z) using impulse invariance technique if the analog filter
 - function is given by $H(S) = \frac{1}{s^2 + 3s + 2}$ T = 1 sec.
- (c) compare FIR and IIR filters