(3 Hours) [Total Marks 100]

10

10

10

10

T	-	
N	ĸ	٠
ıν.	ம.	

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Draw neat diagrams wherever necessary.
- 4. Symbols have usual meaning unless otherwise stated.
- 5. Use of non-programmable calculator is allowed.

Q 1. Attempt any **two**:

- (i) State and prove Kepler's laws of planetary motion.
- (ii) Obtain the equation of motion of a particle of mass 'm' as related to the rotating earth. Hence show that the angle between g and ge depends on colatitude angle Θ.
- (iii) Derive an expression for Coriolis theorem. Interpret each term.

Q 2. Attempt any **two**:

- (i) What is meant by generalized co-ordinates? Derive an expression for 10 generalized velocity and generalized kinetic energy.
- (ii) Obtain Lagrange's equation of motion by using D'Alembert's principle for holonomic systems.
- (iii) A double pendulum consists of two weightless rods connected to each other and a point of support. The masses m_1 and m_2 are not equal but the length of the rods are equal. Pendulums are free to swing only in one vertical plane. Derive the Lagrangian for the system.

Q 3 Attempt any **two**:

- (i) For fluids, derive the conservation equation for energy in the form of Bernoulli's theorem.
- (ii) Derive Euler's equations of motion of a rigid body. Solve these equations for a torque free rotational motion of symmetric body and hence show that the magnitude of the angular velocity vector is a constant.
- (iii) A rigid body is constrained to move about a point which is fixed. Derive an expression for its angular momentum about the instantaneous axis of rotation passing through the fixed point. Hence derive an expression for kinetic energy, $T = \frac{1}{2} \vec{\omega} \cdot \vec{L}$.

Q 4 Attempt any two:

- (i) The potential energy of a one dimensional anharmonic oscillator is given by $V(x) = K\left(\frac{x^2}{2} + \frac{\alpha x^4}{4}\right)$, where K is the spring constant and α is anharmonic coefficient. Discuss the potential energy curve for various combinations of K and α .
- (ii) Discuss fixed points of a logistic map, stability of fixed points and periodic attractors. Explain how series of bifurcations lead to chaos when $\lambda = 3.57$.
- (iii) Discuss numerical solutions of Duffing's equation for $\gamma = 0.1$, and f = 0.5 & f = 3 and also explain why the two solutions for even harmonics are different.

68116 Page 1 of 2

O 5. Attempt any **four**:

- Show that when a body moves in a central force field its motion is confined to 5 a plane.
- (ii) Find the Coriolis force acting on a body of mass 1kg moving northward with a 5 horizontal velocity of 100 m/s at a place on earth whose colatitudes is 60° N
- 5 (iii) Define constraints. With good examples, explain holonomic and nonholonomic constraints.
- (iv) Define cyclic coordinate. Which coordinate is called as cyclic coordinate in 5 equation given below
 - a) $L = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2) mgy$ b) $p_{\theta} = mr^2 \dot{\theta}$
- Consider a fluid flow in which velocity is given by, $\vec{v}(x,t) = \frac{at}{x}\hat{i}$, x > 0. (v) 5 Find the acceleration $\vec{a}(x,t)$ of the fluid element at position x and time t.

5

5

- (vi) If a rigid body consists of three particles of masses 2, 1 and 4 grams located at (+1,-1,1), (2,0,2), (-1,1,0) cm respectively. Find principal moment of inertia and product of moment of inertia.
- Two very close initial values of x on logistic map are 0.50000 and 0.50002 (vii) respectively. With $\lambda = 4$ after 20 iterations the values are 0.08561 and 0.00561 respectively. Calculate Lyapunov exponent.
- What is phase space diagram? Plot the phase space diagram for one 5 (viii) dimensional oscillator.

68116 Page 2 of 2