Total Marks: 100

Time: 3 Hrs

N.B	.:(1)	All questions are compulsory.	
	(2)	Figures to the right indicate full marks.	600
	(3)	Draw neat diagrams wherever necessary .	75 YE
	(4)	Symbols have usual meaning unless otherwise stated.	
	(5)	Use of non-programmable calculator is allowed.	
1.	(a)	Attempt any two: For hydrogen atom, write down the differential equation for the radial part, $R(r)$, of the wave function $\Psi = R(r)$. $\Theta(\theta)$. Using this, show that the magnitude of angular momentum is quantized.	1
	(b)	State Pauli's exclusion principle. Show that the system of electrons is described by antisymmetric wave functions.	10
	(c)	Discuss Stern-Gerlach experiment, which demonstrates the existence of magnetic moment associated with electron spin.	10
2			
2	(a)	Attempt any two: Explain with neat diagram, L-S and J-J coupling, for two electron atoms.	10
	, ,		
	(b)	What is normal Zeeman effect? Discuss the quantum theory of normal Zeeman effect and obtain an expression for Zeeman shift.	10
	(c)	Write expression for average position of electron and explain allowed and forbidden transitions. State selection rules for allowed transitions and discuss whether following transitions are allowed or forbidden. (i) $\Psi_{200} \rightarrow \psi_{100}$ (ii) $\Psi_{320} \rightarrow \psi_{211}$	10
3.	(a)	Attempt any two: Write expression for vibration-rotation energy of a diatomic molecule.	10
		Using appropriate selection rules, find the expression for the frequency of spectral lines in P and R branch of the spectrum. Draw energy level diagram.	10
	(b)	Prove that the vibrating diatomic molecule is equivalent to a single particle executing linear harmonic motion. Write quantum expression for its vibrational energy and also draw energy level diagram.	10
	(c)	Draw a labeled schematic diagram of a microwave spectrometer and explain function of its various parts.	10

4.	(a)	Attempt any two: Explain pure rotational Raman spectra of a linear diatomic molecule.	10
	(u)	Explain pure rotational raman spectra of a finear diatornic moreover.	
	(b)	What is Raman effect? With the help of neat diagram, describe the experimental set up of Raman effect.	10
	(c)	Explain the principle of Electron Spin Resonance (ESR). Describe the ESR spectrometer set up with the help of labeled diagram.	10
5.		Attempt any four:	
	(i)	For a d-electron, draw space quantization diagram. Also calculate cosine of angle between each orientation of L and Z-axis.	05
	(ii)	Show that the solution $R_{10}(r) = \frac{2}{a_0^{3/2}} e^{-r/a_0}$	05
		of radial differential equation of hydrogen atom is normalized.	
	(iii)	Define Lande's 'g' factor and find its value ² P _{3/2} state.	05
	(iv)	A spectral line of 4000 A is subjected to 0.5 T of magnetic field. The normal Zeeman shift is observed to be 0.03735 A. Determine the specific charge of an electron (e/m). Given: $c = 3 \times 10^8$ m/s.	05
	(v)	Determine rotational energy of $J=2$ state in eV for HCl molecule having bondlength 2.1 A. Given: Reduced mass of HCl = 0.162×10^{-26} Kg, $\hbar = 1.054 \times 10^{-34}$ Js, $1 \text{eV} = 1.6 \times 10^{-19}$ J	05
0	(vi)	Calculate vibrational frequency of Hydrogen molecule if its force constant is 480 n/m and mass of hydrogen atom is 1.67 x 10 ⁻²⁷ Kg.	05
	(vii)	If bondlength of H_2 is 0.07417nm, what would be the position of the first rotational Raman line in the spectrum? Given: $M(H) = 1.673 \times 10^{-27} \text{ Kg}$, $h = 6.63 \times 10^{-34} \text{Js}$, $c = 3 \times 10^8 \text{m/s}$	05
	(viii)	The ¹³ C NMR spectrum of a compound occurs at 10.705 MHz in a magnetic field of 1 T. What is its resonance frequency if the applied field is 3 T.	05
A - 1	111/12	A Y ACI OT THE CO. ON A Y S.V. O.	
