3 Hours] [Total Marks: 100

- N.B.: (1) All questions are compulsory.
 - (2) Figures to the right indicate marks for respective subquestions.
- 1. Choose the correct option. Attempt all the subquestions.
 - (i) Let H be a normal subgroup of G. Let $\circ(aH) = 3$ in $\frac{G}{H}$ and |H| = 10, (2) then order of a is
 - (a) 1
 - (b) 30
 - (c) one of 3, 6, 15 or 30
 - (d) None of these.
 - (ii) Which of the following is not true for a normal subgroup H of a group (2) G?
 - (a) $aHa^{-1} \subseteq H$ for each $a \in G$.
 - (b) $aHa^{-1} = H$ for each $a \in G$.
 - (c) Every left coset of H in G is also a right coset of H in G i.e. aH = Ha for each $a \in G$.
 - (d) G/H is Abelian.
 - (iii) Which of the following is not true?

- (a) \mathbb{Z}_3 is isomorphic to A_3 .
- (b) \mathbb{Z}_4 is isomorphic to < (2 1 3 4) >, a subgroup of S_4 .
- (c) V_4 is isomorphic to $\{I, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$ a subgroup of S_4 .
- (d) \mathbb{Z}_6 is isomorphic to a subgroup of A_4 .
- (iv) The group of units of a ring is

(2)

(2)

- (a) Abelian but may not be cyclic
- (b) Cyclic
- (c) may not be Abelian
- (d) finite

Paper / Subject Code: 88625 / Mathematics: Algebra

- (v) Consider the ideals of ring of integers $I = 6\mathbb{Z}$ and $J = 10\mathbb{Z}$, then (2)(a) $I + J = 22\mathbb{Z}, IJ = 120\mathbb{Z}.$ (b) $I + J = 2\mathbb{Z}, IJ = 60\mathbb{Z}.$ (c) $I + J = 2\mathbb{Z}, IJ = 30\mathbb{Z}.$ (d) None of these. (vi) In the polynomial ring $\mathbb{Z}[x]$, consider $I = \{f(x) : f(0) = 0\}$, then (2)(a) I is an ideal. (b) I is a maximal ideal. (c) I is ideal but neither prime ideal nor maximal. (d) I is prime ideal but not maximal ideal. (vii) Which of the following is true in $\mathbb{Z}[\sqrt{-5}]$ (2)(a) $2 + \sqrt{-5}$ is irreducible but not prime. (b) $2 + \sqrt{-5}$ is prime. (c) 3 is prime. (d) $2 + \sqrt{-5}$ is reducible. (viii) The number of maximal ideals in $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ is (2)(a) 1. (b) 3. (c) 6. (d) 9. (ix) The field of quotients of $\mathbb{Z}[i]$ is (2)(a) $\mathbb{Q}[i]$ (b) R (c) C (d) None of these. (x) Let $I = (x^2 + x + 1)$ in $\mathbb{Z}_n[x]$, $1 \le n \le 10$ Then, $\mathbb{Z}_n[x]/I$ is a field if (2)(a) n = 3(b) for all $n \leq 5$ (c) n = 7
- 2. (a) Answer any **ONE**

(d) n = 2.5

(i) Let G and G' be groups and $f: G \to G'$ be an onto homomorphism. (8) Prove that if H is a subgroup G then $f(H) = \{f(h) : h \in H\}$ is a subgroup of G' and f(Ha) = f(H)f(a) for each $a \in G$. Further, if H is normal in G then f(H) is normal in G'. Give example to show that f(H) need not be normal in G' if f is not onto.

Page 2 of 4

Paper / Subject Code: 88625 / Mathematics: Algebra

(ii) If $a \in G_1, b \in G_2$ such that $\circ(a) = m, \circ(b) = n$, then prove that (8) $(a,b)^k = (a^k,b^k)$ for every $k \in \mathbb{N}$ and $\circ(a,b) = lcm(m,n)$. Hence prove that, G_1, G_2 are cyclic then $G_1 \times G_2$ is cyclic if and only if $\circ(G_1)$ and $\circ(G_2)$ are relatively prime.

(b) Answer any **TWO**

- (i) Show that kernel of a group homomorphism $f: G \to G'$ is a normal (6) subgroup of G. Also show that for any normal subgroup H of G there is a group homomorphism $\eta: G \to G/H$ such that $\ker \eta = H$.
- (ii) If G/Z(G) is cyclic then prove that G is Abelian. (6)
- (iii) Show that order of each element of the quotient group $\frac{\mathbb{Q}}{\mathbb{Z}}$ is finite. (6)
- (iv) Show that $\{e, b\}$ is normal in $\{e, b, a^2b, a^2\}$ but not normal in $\{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$ where $a^4 = e = b^2, aba = b$. (6)

3. (a) Answer any **ONE**

- (i) Define characteristic of a ring R. Show that, characteristic of a (8) ring R is n if and only if the order of the multiplicative identity of R is n in the group (R, +). Give example of an infinite ring with characteristic 2.
- (ii) Let R be a commutative ring. If I, J are ideals in R, Show that (8) $I \cap J, I + J$ and IJ are ideals of R, where $I+J = \{x+y : x \in I, y \in J\}$ and $IJ = \left\{\sum_{i=1}^{n} x_i y_i : x_i \in I, y_i \in J, n \in \mathbb{N}\right\}$. Further if R = I + J, show that $I \cap J = IJ$.

(b) Answer any **TWO**

- (i) Let A be a subring and B be an ideal of a ring R. Then prove that (6) $A \cap B$ is an ideal of A and $A/(A \cap B) \simeq (A+B)/B$.
- (ii) Let R, R' be commutative rings and $f: R \to R'$ be a ring homo- (6) morphism. Show that-
 - (I) If f is surjective, I is an ideal of R, then f(I) is an ideal of R'.
 - (II) If I' is an ideal of R', then $f^{-1}(I')$ is an ideal of R.
- (iii) Let $R = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ and $I = \{a + b\sqrt{2} : a, b \in (6) \mathbb{Z}, a \text{ is even}\}$. Show that the quotient ring R/I is isomorphic to \mathbb{Z}_2 .
- (iv) Let R be a commutative ring with prime characteristic p and $f: R \to R$ be defined as $f(a) = a^p$ for $a \in R$. Show that f is a ring homomorphism.

Paper / Subject Code: 88625 / Mathematics: Algebra

4. (a) Answer any **ONE**

(i) Show that an ideal P in a commutative ring R is a prime ideal if (8) and only if the quotient ring R/P is integral domain.

Further prove that in a finite commutative ring every prime ideal is maximal.

(ii) Define irreducible polynomial. (8)

Let F be a field. Show that $F[x]/\langle f(x)\rangle$ is a field if and only if f(x) is irreducible over F.

(b) Answer any **TWO**

- (i) Let R, S be commutative rings. And $f: R \to S$ be an onto ring (6) homomorphism. Prove that, if M is a maximal ideal in S then, $f^{-1}(M)$ is a maximal ideal in R.
- (ii) Show that the only irreducible polynomials in $\mathbb{R}[x]$ are a linear polynomial x-a or quadratic polynomial x^2+bx+c such that $b^2-4c<0$, where $a,b,c\in\mathbb{R}$.
- (iii) Show that in $\mathbb{Z}[i]$, 3 is irreducible but 2 is not irreducible. (6)
- (iv) Show that $\langle x, 2 \rangle$, the ideal generated by x and 2 is a maximal (6) ideal of $\mathbb{Z}[x]$. Further show that this ideal is not principal ideal.

5. Answer any FOUR

- (a) Let G be a group anf H be a normal subgroup of G. Then prove that (5)
 - (p) $(Ha)^n = Ha^n$ for all $n \in \mathbb{Z}$.
 - (q) $\circ (Ha)$ divides $\circ (a)$.
- (b) Find a subgroup of order 9 in $\mathbb{Z}_{12} \times \mathbb{Z}_4 \times \mathbb{Z}_{15}$. (5)
- (c) Show that a finite field of size 8 has characteristic 2. (5)
- (d) Determine all the ideals of $\mathbb{R}[x]/(x^3 + 3x^2 4)$ by stating the results (5) used.
- (e) Let R be commutative and I, J be ideal of R and P is a prime ideal of (5) R that contains $I \cap J$. Prove that either $I \subseteq P$ or $J \subseteq P$.
- (f) Let \mathbb{F} be a field. Show that every ideal of $\mathbb{F}[x]$ is a principal ideal. (5)
