Paper / Subject Code: 24246 / Mathematics: Topology of Metric Spaces

Duration 3 Hrs Marks: 100

- N.B. : (1) All questions are compulsory
 - (2) Figures to the right indicate marks.
- 1. Choose correct alternative in each of the following:

(20)

- i. Which of the following maps $d: \mathbb{R} \longrightarrow \mathbb{R}$ is not a metric on \mathbb{R} ?
- (a) d(x,y) = |x-y| (b) d(x,y) = 3|x-y| (c) $d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$ (d) $d(x,y) = \max\{2, |x-y|\}$
- ii. Which of the following is a description of the open ball B((0,0),1) for the metric d: $\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ defined as $d((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|$?
 - (a) It consists of the points within the circle of radius 1 centred at (0,0)
 - (b) It consists of the points inside the square bounded by the lines x+y=1, -x-y=1,-x + y = 1, x - y = 1.
 - (c) It consists of the points inside the square bounded by the lines x=1, x=-1, y=1,y = -1.
 - (d) None of the above
- iii. Let $A = \{(x,y) \in \mathbb{R}^2 : x,y \in \mathbb{Q}\}$ and $B = [0,1] \times [0,1]$ be subsets of \mathbb{R}^2 with Euclidean metric. Then,

- (a) $\overline{A} = \mathbb{R}^2$; $\overline{B} = B$ (b) $\overline{A} = \mathbb{Q} \times \mathbb{Q}$; $B^{\circ} = B$ (c) $A^{\circ} = \mathbb{Q} \times \mathbb{Q}$; $B^{\circ} = (0, 1) \times (0, 1)$ (d) None of the above.
- iv. Which of the following sets is not closed in the subspace \mathbb{Q} of \mathbb{R} (distance being usual)?
- (b) $[-\sqrt{3},\sqrt{3}] \cap \mathbb{Q}$
- (c) $(0,1) \cap \mathbb{Q}$
- v. If $f:[0,1]\to [0,1]$ is defined by $f(x)=\begin{cases} x & \text{if } x\in\mathbb{Q}\cap[0,1]\\ 1-x & \text{if } x\in(\mathbb{R}\setminus\mathbb{Q})\cap[0,1] \end{cases}$, then
 - (a) f is continuous on [0, 1] and does not satisfy intermediate value property.
 - (b) f satisfies intermediate value property but f is not continuous.
 - (c) f is continuous only at x = 1/2 and f([0,1]) = [0,1].
 - (d) none of the above.
- vi. Which of the following subspaces are dense in \mathbb{R}

 - (a) (\mathbb{Z}, d) , where d is the usual distance. (b) $(\mathbb{R} \setminus \mathbb{Q}, d)$, where d is the usual distance.
 - (c) (\mathbb{Q}, d) , where d is the discrete metric.
- (d) None of these.
- vii. Let (X,d) be a complete metric space, A and B are complete subspaces of (X,d) and $A \cap B$ is nonempty then
 - (a) $A \cup B$ and $A \cap B$ are complete.
- (b) $A \cup B$ is complete and $A \cap B$ is not.
- (c) $A \cap B$ is complete and $A \cup B$ is not.
- (d) none of the above.
- viii. Which of the following statements is TRUE?
 - (a) (0,1] is compact in (\mathbb{R},d) where d is usual metric.
 - (b) [1,2] is compact in (\mathbb{R},d_1) where d_1 is the discrete metric.
 - (c) $\{1,2,3,4\}$ is a compact set in (\mathbb{N},d) , where d is usual metric from \mathbb{R} .
 - (d) none of these.

1 of 3

Paper / Subject Code: 24246 / Mathematics: Topology of Metric Spaces

- ix. Let A be a compact subset of \mathbb{R} . Then
 - (a) A may not be compact.
- (b) A° may not be compact.
- (c) ∂A may not be compact.
- (d) None of the above.
- x. Let (x_n) be a sequence in [0, 1] with usual metric from \mathbb{R} . Then, which of the following is not true?
 - (a) (x_n) has a convergent subsequence.
 - (b) (x_n) is bounded but may not be convergent.
 - (c) (x_n) may have subsequences converging to different limits.
 - (d) (x_n) is Cauchy.
- 2. (a) Attempt any One from the following:

(8)

- (i) Let (X,d) be a metric space and $S\subseteq X$. Show D(S) is a closed subset of X where D(S) denotes the set of all limit points of S.
- (ii) Let (X, d) be a metric space. Prove the following:
 - (I) Arbitrary union of open sets is open.
 - (II) A subset G of X is open if and only if it is an union of open balls.
- (b) Attempt any Two from the following:

(12)

- (i) Show that in a discrete metric space (X, d), every subset is both open and closed.
- (ii) Define a metric space (X,d) and give an example of a metric space. Let (X,d) be a metric space, prove that $|d(x,y) - d(x,z)| \le d(y,z) \ \forall x,y,z \in X$.
- (iii) Consider the norms $\| \|_1$, $\| \|_2$ and $\| \|_{\infty}$ on \mathbb{R}^2 defined as, for any $x = (x_1, x_2) \in \mathbb{R}^2$, $\|x\|_1 = |x_1| + |x_2|$, $\|x\|_2 = \sqrt{x_1^2 + x_2^2}$ and $\|x\|_{\infty} = \max\{|x_1|, |x_2|\}$. Show that for $x \in \mathbb{R}^2$,

 - I) $||x||_2 \le ||x||_1$ II) $||x||_1 \le \sqrt{2} ||x||_2$ III) $||x||_{\infty} \le ||x||_2$
- (iv) Let (X,d) be a metric space. $d_1: X \times X \to \mathbb{R}$ is a metric defined as $d_1(x,y) =$ $\frac{d(x,y)}{1+d(x,y)}$, $\forall x,y \in X$. Show that d and d_1 are equivalent metrics on X
- (a) Attempt any One from the following:

(8)

- (i) Let (X, d) be a metric space and Y be a non-empty subset of X. Prove that a subset G of Y is open in the subspace (Y, d) if and only if $G = V \cap Y$ where V is an open set in (X,d).
- (ii) Show that [0,1] is uncountable.
- (b) Attempt any Two from the following:

(12)

- (i) Check whether Cantor's Theorem is applicable in each of the following examples and find $\bigcap_{n\in\mathbb{N}}F_n$ in each ase, where (F_n) is a sequence of subsets of \mathbb{R} and the distance d is usual distance from \mathbb{R} , in each examples:
 - (i) $X = [-1, 1], F_n = [-\frac{1}{n}, \frac{1}{n}]$
 - (ii) $X = (0,1), F_n = [0,\frac{1}{n}]$
- (ii) Show that in a metric sapce (X, d) every Convergent sequence is Cauchy and the converse not true.

2 of 3

Paper / Subject Code: 24246 / Mathematics: Topology of Metric Spaces

- (iii) Let (X, d) be a metric space and $A \subseteq X$. Show that $p \in \overline{A}$ if and only if there is a sequence of points in A converging to p.
- (iv) Show that $S = \{x \in \mathbb{Q} : 3 < x^2 < 5\}$ is both open and closed in the subspace \mathbb{Q} of \mathbb{R} with usual metric.
- 4. (a) Attempt any One from the following:

- (8)
- (i) Consider the metric space (\mathbb{R}, d) where d is usual metric, $\emptyset \neq A \subset \mathbb{R}$. Prove that if A is closed and bounded then A is sequentially compact.
- (ii) Suppose (X, d) is a metric space and \mathcal{C} is a non-empty collection of compact subsets of X then
 - (I) $\bigcap_{K \in \mathcal{C}} K$ is a compact subset of X.
 - (II) If \mathcal{C} is finite then $\bigcup_{K \in \mathcal{C}} K$ is a compact subset of X.
- (b) Attempt any Two from the following:

(12)

- (i) Show that a compact subset of a metric space is closed.
- (ii) Prove or disprove:
 - (I) A compact set in a metric space is not open.
 - (II) Interior of a compact set are compact.
- (iii) Consider the metric space $(C[a, b], \| \|_{\infty})$, where $\|f\|_{\infty} = \sup\{|f(t)| : t \in [a, b]\}$. Show that the open cover $\{B(0, n)\}_{n \in \mathbb{N}}$ of C[a, b] has no finite subcover. (0 being the constant zero function).
- (iv) Prove that a subset K in a discrete metric space (X, d) is compact if and only if K is a finite set.
- 5. Attempt any Four from the following:

(20)

- (a) Show that every open ball is an open set
- (b) Let d_1, d_2 be metrics on X. Define $d: X \times X \longrightarrow \mathbb{R}$ as $d(x, y) = \max \{d_1(x, y), d_2(x, y)\}$. Show that d is a metric on X.
- (c) Let d_1 and d_2 be metrics on a non-empty set X such that there exist $k_1, k_2 > 0$ such that $k_1d_1(x,y) \leq d_2(x,y) \leq k_2d_1(x,y)$, $\forall x,y \in X$. Show that a sequence (x_n) is Cauchy in (X,d_1) if and only if sequence (x_n) is Cauchy in (X,d_2) .
- (d) Prove that $x^4 7x^2 + 10 = 0$ has 4 distinct roots in \mathbb{R} .
- (e) Determine which of the following subsets of (\mathbb{R}^2, d) , where d is Euclidean distance is compact. Justify your answer.
 - (i) $C = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$
 - (ii) $D = \{(x, y) \in \mathbb{R}^2 : |x| \le 1\}$
- (f) If A, B are compact subsets of \mathbb{R} with respect to usual distance, show that $A \times B$ is a compact subset of \mathbb{R}^2 with Euclidean metric.

3 of 3