3 Hours] [Total Marks: 100

- N.B.: (1) All questions are compulsory.
 - (2) Figures to the right indicate marks for respective subquestions.
- 1. Fill in the blank by choosing the correct option.
 - i. Consider $W = \{(x, y, z) \in \mathbb{R}^3 : 2x + 2y + z = 0, 3x + 3y 2z = 0, x + y 3z = 0\}$. Then $\dim \mathbb{R}^3/W$ is ——— (2)
 - (a) 2 (b) 3 (c) 1 (d) None of these.
 - ii. $\begin{pmatrix} 3/5 & 4/5 \\ -4/5 & 3/5 \end{pmatrix}$ is (2)
 - (a) an orthogonal matrix of reflection
 - (b) an orthogonal matrix of rotation
 - (c) not an orthogonal matrix
 - (d) None of these.
 - iii. If $p_1(t) = t^2 + a_1 t + a_0$ is characteristic polynomial of A and $p_2(t) = t^2 + b_1 t + b_0$ is characteristic polynomial of A^2 then $b_0 =$ (2)
 - (a) a_0 (b) a_0^2 (c) $\frac{1}{a_0}$ (d) None of these.
 - iv. 0 is an eigen value of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ if and only if ———.
 - (a) T is invertible (b) T is not invertible
 - (c) T = 0 (d) None of these.
 - v. Let $A = [a_{ij}]$ be a 10×10 matrix with $aij = \begin{cases} 1 & \text{if } i+j=11 \\ 0 & \text{otherwise} \end{cases}$. (2)

Then the set of eigen values of A is ———.

- (a) $\{0,1\}$ (b) $\{-1,1\}$
- (c) $\{0,11\}$ (d) None of these.
- - (a) only two (b) only one (c) No (d) None of these.
- vii. The minimal polynomial of $\begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}$ for any $\alpha \neq 0$ is ———. (2)
 - (a) $x^2 \alpha$ (b) $x^2 x$ (c) $(x 1)^2$ (d) None of these.

[Turn over]

Paper / Subject Code: 24231 / Mathematics: Linear Algebra

- viii. Let A and B be 3×3 non-diagonal matrices over \mathbb{R} such that (2) $A^2 = A, B^2 = -I$ then ————
 - (a) A is diagonalisable. (b) B is diagonalisable.
 - (c) A and B are diagonalisable. (d) None of these.

ix.
$$A = \begin{pmatrix} 1 & 7 & 5 \\ 0 & 4 & 7 \\ 0 & 0 & 2 \end{pmatrix}$$
 is ———. (2)

- (a) diagonalisable but not orthogonally diagonalisable.
- (b) orthogonally diagonalisable
- (c) not diagonalisable
- (d) None of these.
- x. The rank and signature of the quadratic from $Q(x) = -3x_1^2 + 5x_2^2 + (2)$ $2x_1x_2$ are ————
 - (a) 2 and 2 (b) 2 and 0
 - (c) 2 and -2 (d) None of these.

2. (a) Answer any **ONE**

- i. Let V be an n dimensional inner product space and W be a subspace of V of dimension n-1. Let u be a unit vector orthogonal to W. Show that $T:V\to V$ defined by $T(x)=x-2\langle x,u\rangle u$ is an orthogonal linear transformation such that $T(w)=w,\ \forall\ w\in W$ and T(u)=-u.
- ii. State and prove the Cayley Hamilton theorem. (8)

(b) Answer any **TWO**

- i. Let V be a finite dimensional inner product space and $f: V \to V$ be an isometry, then show that there exists unique $x_0 \in V$ and an unique orthogonal linear transformation $T: V \to V$ such that $f = L_{x_0} \circ T$ where $L_{x_0}: V \to V$ is a translation map defined as $L_{x_0}(X) = X + X_0$.
- ii. Let V be a finite dimensional inner product space and T: (6) $V \to V$ be a linear transformation. Prove that T is orthogonal if and only if $||T(X)|| = ||X|| \quad \forall X \in V$.
- iii. If $A_{2\times 2}$ matrix has the characteristic polynomial $x^2 + 2x 1$, (6) then find the value of det $(2I_2 + A)$.
- iv. If u is a unit column vector in \mathbb{R}^n and $A = I 2uu^t$. Then (6) prove that A is an orthogonal matrix.

3. (a) Answer any **ONE**

- i. If λ is an eigen value of a real $n \times n$ matrix A, then
- (8)

- (p) λ is an eigen value of A^t .
- (q) λ^k is an eigen value of A^k for $k \in \mathbb{N}$. Hence $f(\lambda)$ is an eigen value of f(A), for a polynomial f(x) over \mathbb{R} .
- (r) If A is invertible, then λ^{-1} is an eigen value of A^{-1} .
- ii. Define the minimal polynomial of a square matrix A. Prove that similar matrices have same minimal polynomials. Is the converse true? Justify.

(b) Answer any **TWO**

- i. Let $A_{n\times n}$ be a real matrix. Show that eigen vectors corresponding to distinct eigen values, $\lambda_1, \lambda_2, \dots, \lambda_k$, of A are linearly independent.
- ii. Define invariant subspace. Let V be a finite dimension vector space and $T: V \to V$ be a linear transformation. Show that eigen space of T is invariant under T.
- iii. Find the characteristic polynomial and the minimal polynomial of $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}.$ (6)
- iv. Let A be a 13×13 real matrix of rank 1 and P(t) be the characteristic polynomial of A then prove that $P(t) = t^{12}(t \text{trace } (A))$.

4. (a) Answer any **ONE**

- i. Show that real symmetric matrix of order n is orthogonally diagonalizable. (8)
- ii. Define algebraic and geometric multiplicities of an eigen value of a square matrix. Show that the geometric multiplicity of an eigen value does not exceeds its algebraic multiplicity.

(b) Answer any TWO

- i. Show that a real $n \times n$ is diagonalisable if and only if there is basis of \mathbb{R}^n consisting of eigen vectors of A.
- ii. Let A be an $n \times n$ real symmetric matrix. Then show that $\langle AX, X \rangle > 0$ for all non-zero $X \in \mathbb{R}^n$ if and only if each eigenvalue of A is positive.

[Turn over]

Paper / Subject Code: 24231 / Mathematics: Linear Algebra

- iii. Determine constants a, b, c so that $\begin{pmatrix} 1 & a & b \\ 0 & 2 & c \\ 0 & 0 & 1 \end{pmatrix}$ is diagonalisable (6)
- iv. Let $A_{3\times3}$ real matrix having 1, -1 3 as eigen values. Determine which of the matrices in S are non-singular where $S = \{A^2 + A, A^2 A, A^2 + 3A, A^2 3A\}$. Justify your answer.

5. Answer any FOUR

- (a) Prove or disprove: If the characteristic polynomial of a matrix (5) $A_{n\times n}$ is same as minimal polynomial then A has distinct eigen values.
- (b) Find an orthogonal transformation in \mathbb{R}^3 which represents reflection with respect to the plane x 2y + z = 0.
- (c) Find the eigenvalues and the bases of the corresponding eigen spaces for $\begin{bmatrix} 3 & 1 & 6 \\ 2 & 1 & 0 \\ -1 & 0 & -3 \end{bmatrix}$. (5)
- (d) Let λ_1, λ_2 be the distinct eigenvalues of A with X_1, X_2 as corresponding eigen vectors, then show that $X_1 + X_2$ is not an eigen vector of A.
- (e) Find the condition on k so that $3x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_3 + 2kx_2x_3$ (5) is positive definite by stating the necessary result.
- (f) Identify the conic $5x^2 + 4xy + 5y^2 9 = 0$. (5)
