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N.B.:

(1) All questions are compulsory.
(2) Figures to the right indicate marks for respective subquestions.

1. Fill in the blank by choosing the correct option.
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. Let A = [a;;] be a 10 x 10 matrix with aij = {

Consider W = {(x,y,2) € R? : 20 + 2y + 2 = 0,3z + 3y — 22 =
0,2 +y — 32 =0}. Then dimR3/W is
(a) 2 (b) 3 (c¢) 1 (d) None of these.

3/5 4/5\ .
(—4/5 3/5) :
a) an orthogonal matrix of reflection
b) an orthogonal matrix of rotation

(
(
(¢) not an orthogonal matrix
(d) None of these.

If p1(t) = t* +ait + ap is characteristic polynomial of A and ps(t) =
t2 + byt + by is characteristic polynomial of A% then by =

(a) ap (b) a3 (c) aio (d) None of these.

0 is an eigen value of a linear transformation 7" : R" — R" if and

only if
(a) T is invertible (b) T is not invertible
(¢) T=0 (d) None of these.

1 ifi4+j=11

0 otherwise

Then the set of eigen values of A is
(@) {01} (b) {-1.1}

(¢) {0,11} - (d) None of these.
Let 7' : R?> — R? be the orthogonal transformation of reflection
in a straight line passing through origin then 7' has
values.

(a) only two = (b) only one (¢) No (d) None of these.

eigen

The minimal polynomial of [(1) ﬂ for any o # 0 is
(a) 22—~a  (b) 22 -2 (c) (x—1)> (d) None of these.
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Let A and B be 3 x 3 non-diagonal matrices over R such that
A? = A, B?> = —] then

(a) A is diagonalisable.  (b) B is diagonalisable.

(c) A and B are diagonalisable.  (d) None of these.

1 75
A=10 4 7] is
00 2
a) diagonalisable but not orthogonally diagonalisable.
b) orthogonally diagonalisable

¢) not diagonalisable
d) None of these.

(
(
(
(

. The rank and signature of the quadratic from Q(z) = —3x% +5x35+

2x1x9 are -
(a) 2and 2 (b) 2 and 0
(¢c) 2 and -2 (d) None of these.

2. (a) Answer any ONE

i. Let V be an n dimensional inner product space and W be
a subspace of V' of dimension n — 1. Let u be a unit vector
orthogonal to W. Show that T': V. — V defined by T'(x) =
xr — 2(x,u)u is an orthogonal linear transformation such that
T(w)=w, YweW and T'(u) = —u.

ii. State and prove the Cayley Hamilton theorem.

(b) Answer any TWO

57376

i. Let V be a finite dimensional inner product space and f : V' —
V be an isometry, then show that there exists unique xzo € V'
and an unique orthogonal linear transformation 7" : V — V
such that f = L, o1 where L, : V — V is a translation map
defined as L, (X) = X + Xo.

ii. Let V' be a finite dimensional inner product spaace and T :
V. — V be alinear transformation. Prove that 7' is orthogonal
if and only if [|T(X)|| =X VX e V.

iii. If Ay matrix has the characteristic polynomial 22 + 2z — 1,
then find the value of det (21 + A).

iv. If u is a unit column vector in R® and A = I — 2uu!. Then
prove that A is an orthogonal matrix.
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3. (a) Answer any ONE

i. If X is an eigen value of a real n x n matrix A, then
(p) A is an eigen value of A’.
(q) A¥ is an eigen value of A* for k € N. Hence f(\) is an

eigen value of f(A), for a polynomial f(z) over R.

(r) If A is invertible, then A~! is an eigen value of A"

ii. Define the minimal polynomial of a square matrix A. Prove
that similar matrices have same minimal polynomials. Is the
converse true? Justify.

(b) Answer any TWO

i. Let A,x, be a real matrix. Show that eigen vectors corre-
sponding to distinct eigen values, Ay, Ao, -+ , Ag, of A are lin-
early independent.
ii. Define invariant subspace. Let V' be a finite dimension vector
space and T : V. — V be a linear transformation. Show that
eigen space of T’ is invariant under 7.
iii. Find the characteristic polynomial and the minimal polyno-
3 00
mial of [0 2 1
01 2

iv. Let A be a 13 x 13 real matrix of rank 1 and P(¢) be the

characteristic polynomial of A then prove that P(t) = t'%(t —
trace (A)).

4. (a) Answer any ONE
i. Show that real symmetric matrix of order n is orthogonally
diagonalizable.
ii. Define algebraic and geometric multiplicities of an eigen value
of a square matrix. Show that the geometric multiplicity of
an eigen value does not exceeds its algebraic multiplicity.

(b) Answer any TWO

i. Show that a real n x n is diagonalisable if and only if there is
basis of R™ consisting of eigen vectors of A.

ii. Let A be an n X n real symmetric matrix. Then show that
(AX,X) > 0 for all non-zero X € R" if and only if each
eigenvalue of A is positive.
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1 a b

iii. Determine constants a,b,csothat | 0 2 ¢ | is diagonalisable
0 01

iv. Let Agy3 real matrix having 1, -1 3 as eigen values. Determine

which of the matrices in S are non-singular where S = { A% +
A A% — A A%+ 3A, A% — 3A}. Justify your answer.

5. Answer any FOUR

(a) Prove or disprove: If the characteristic polynomial of a matrix
Anxn 18 same as minimal polynomial then A has distinct eigen
values.

(b) Find an orthogonal transformation in R® which represents reflec-
tion with respect to the plane r — 2y + 2 = 0.

(¢) Find the eigenvalues and the bases of the corresponding eigen

3 1 6
spaces for | 2 1 0
-1 0 =3

(d) Let A1, A2 be the distinct eigenvalues of A with X7, X5 as corre-
sponding eigen vectors, then show that X; 4+ X5 is not an eigen
vector of A.

(e) Find the condition on k so that 323 + 3 + 223 + 2z123 + 2kxo13
is positive definite by stating the necessary result.

(f) Identify the conic 5z% + 4xy + 5y> ~ 9 = 0.
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