[Time: 3 Hours] [Marks:100] Please check whether you have got the right question paper. N.B: 1. All questions are compulsory. 2. Figures to the right indicate full marks. 3. Use of log table/non-programmable calculator is allowed. Answer **any four** of the following: 20 Q.1 A) Explain the term quality & quality control. B) Concentrated H₂SO₄ (MW=98) has density of 1.84 gcm⁻³ and contains 86% (w/w) of H₂SO₄. Calculate its concentration in molarity, and convert it into normality. C) Calculate the percentage composition of each element in sodium hydrogen phosphate. [Given atomic weight of; H=1, P=31, O=16,Na=23]. D) Discuss the importance of quality concepts in industry. E) Discuss the sampling of homogeneous and heterogeneous liquid. F) Describe displacement method for the sampling of gases, with a neat labelled diagram. Answer **any four** of the following: Q.2 20 A) Discuss the theory of redox indicators and explain the criteria for selection of an indicator in redox titrations. B) What are metallochromatic indicators? Mention any four desired properties of a good metallochromic indicator. C) 10.cm³ of 0.1M Fe(II) solution is titrated with 0.1M Ce(IV) in acidic medium. Calculate the potential: (i) at the equivalence point. (ii) on addition of two times the volume of titrant required at the equivalence point. Given: $E^{o}_{pt/Ce^{4+}, Ce^{3+}} = 1.44V$ $E^{o}_{pt/Fe^{4+}}$, $Fe^{3+} = 0.771V$ D) 25.0cm³ of 0.1M Fe(II) is titrated with 0.02M KMnO₄ at pH 1.5. Calculate the potential at the equivalence point. Given: $E^{o}_{pt/Fe^{3+}, Fe^{2+}} = 0.771V$ $E^{o}_{pt/MnO}^{4}$, $Mn^{2+} = 1.510V$ E) "EDTA is a reagent of choice in many analytical laboratory, in spite of its low selectivity" – F) Explain direct titrations and back titration w.r.t. EDTA titrations. 0.3 Answer any four of the following: 20 A) Discuss the principle of AAS. B) Explain the use of hollow cathode lamp, with a labelled diagram, giving one disadvantage. C) Derive a mathematical relationship between the intensity of fluorescent radiation and concentration of the solution. D) Draw a schematic diagram of turbidimeter and explain turbidimetric titrations, using turbidimetric titration curve. E) With the help of a diagram, describe premix burner mentioning any two of its advantages. F) What is phosphorescence? Draw a schematic diagram of phosphorimeter and discuss its working explaining the role of shutter.

57344 Page 1 of 3

Q.4		Answer any four of the following:	20
	A)	Explain the various factors affecting solvent extraction.	9 5 V
	B)	Define [pH] _{1/2} and explain its significance, with a graph of percentage extraction versus pH.	2, 5,
	C)	What are the applications, advantages and limitations of solid phase extraction?	200
	D)	Explain the function of pump in HPLC. Name any two pump used in HPLC, giving one	
		advantage and limitation of each type.	
	E)	What is the role of detector in HPLC? Discuss UV detector used in HPLC, mentioning its advantages.	2 × ×
	F)	Mention various steps involved in HPTLC. Write any two advantages and limitations of HPTLC.	
Q.5	A)	Answer any five of the following, in one sentence:	05
	a)	What are analytical reagent?	
	b)	What is the molarity 0.1N HCl solution?	
	c)	What is the milliequivalents of 20cm ³ in 1NaOH?	
	d)	Name the most commonly used reagent for dissolution of silicate rocks.	
	e)	Name any one equipment used for sampling of compact solids.	
	f)	Name any one most common flux used in the analysis of compounds of alkali metals.	
	g)	Give the relationship between sampling error and square root of the number of samples averaged.	
	h)	Name any one method for size reduction w.r.t. sampling of solids.	
	B)	Answer any five of the following in one sentence:	05
	a)	What is the role of phosphoric acid in the redox titration of Fe ⁺² versus Cr ₂ O ₇ ²⁻ using	
	b)	diphenylamine indicator? Give the reversible reaction of diphenylbenzidine indicator in redox titration of Fe ⁺² vs	
	ĺ	$\operatorname{Cr_2O_7^{2-}}$.	
	c)	Name the most commonly used indicator in the redox titration of Fe ⁺² versus Ce ⁺⁴ in acidic medium.	
	d)	Give any one advantage of EDTA as titrant.	
	e)	Give a mathematical expression for absolute stability constant, for the reaction involving fully ionized form of EDTA and M ⁿ⁺ .	
	f)	Give an example of indirect titration with respect to EDTA titrations.	
Silv Co	g)	Name the type of EDTA titration involving the following reaction. $M^{+n} + MgY^{2-} \rightarrow M-Y^{(n-4)+} + Mg^{2+}$	
	h)	What is tris(1,10-phenanthroline)iron(II)sulphate commonly known as?	
30,07	C)	Fill in the blanks (any five)	05
	a)	Nephelometry involves measurement of intensity of light as a function of	
		concentration of dispersed phase.	
	b)	In AAS, the steady light from hollow cathode lamp is converted in to pulsating light by	
	c)_	In nephelometry, the detector is usually, but not necessarily, placed at angle to the incident radiation.	
65	ON A		

57344 Page 2 of 3

Paper / Subject Code: 24212 / Chemistry: Analytical Chemistry (6 Units)

- d) A calibration curve, in flame photometry, is a plot of ______ against concentration.
- e) The commonly used radiation source in fluorimeter is _____lamp.
- f) In the expression w.r.t. turbidimetry, S=Ktc, 'K' stands for ________.
- g) Increase in viscosity of the solution, will _____ the intensity of emitted light in FES.

05

- D) State true or false (any five)
 - a) In HPLC, role of precolumn is to remove impurities from the sample solution.
- b) UV detector is used in HPTLC.
- c) Immiscible solvent pairs can be used for HPTLC separations.
- d) Separation of solute in HPTLC takes place by phenomenon of partition.
- e) Development time in HPTLC is same as that of TLC.
- f) Refractive index detector is highly temperature sensitive.
- g) Degasser system is used in HPLC, to remove dissolved gases from the solvent.

57344 Page 3 of 3