QP Code: 13490

(3 Hours)

[Total Marks: 80

20

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attemt any three questions from the remaining five questions.
 - (3) Assume suitable data if necessary.
 - 1. Answer the following any four :-
 - (a) Find the Z-transform of

(i)
$$x(n) = a^n u(n)$$

(ii)
$$x(n) = -u(-n-1)$$

also specify the ROC.

$$Ha(s) = \frac{3}{(s+1)(s+2)}$$
 Determine $H(z)$ using

impulse invarient method assume T = 2sec

- (c) If $x(k) = \{8, -2-2j, 0, -2+2j\}$ find the IDFT.
- (d) Difference b/w Linear and circular convolution.
- (e) Define sampling theorm. What are the advantages DSP.
- 2. (a) Find the DFT of $x(n) = [1 \ 1 \ 2 \ 3]$ using the above result and not otherwise find the DFT of

$$x_1(n) = \{1, 0, 1, 0, 2, 0, 3, 0\}$$

 $x_2(n) = \{1, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0\}$
 $x_3(n) = [1, 1, 2, 3, 1, 1, 2, 3]$

- (b) $x(n) = \{2, 2, 2, 2, 1, 1, 1, 1\}$ compute 8 point DFT with Radix-2 DIT FFT algorithm. 10
- 3. (a) The input sequence x(n) = [1, 1, 2, -1, 2, -3, -1, 1, 2, 1, -3, -1] having the impulse response of FIR filter $h(n) = \{2, 3, 4\}$ using overlap save method find o/p response.
 - (b) Determine the frequency response of the system y(n) = 0.9y(n-2) + 0.2x(n). Find magnitude 10 and phase response of it.
- 4. (a) Realize the systme using D.F. II, cascade and parallel realization 5 $y(n) = x(n) + \frac{1}{4}x(n-1) + \frac{1}{6}y(n-1) + \frac{1}{6}y(n-2)$
 - (b) $H(e^{jw}) = e^{-j3w} [0.5 + 2.2\cos 3w] + [1.2\cos 2w + 0.4\cos w]$ obtain order and impulse response of s/m.
 - (c) Write a short note on comb filter and notch filter.

10

I TURN OVER

5. (a) Design a digital Butterworth fiture that satisfy the following constraints using Bilinear transformation.

Assume T = 1 sec

$$0.9 \le H(e^{jW}) \le 1$$
 $0 \le w \le 0.25 \pi$
 $H(e^{jW}) \le 0.2$ $0.6 \pi \le w \le \pi$

10

(b) A linear phase FIR filure has desired response

$$\begin{aligned} H_{d}\left(e^{jw}\right) &= 0 \text{ for } -3\frac{\pi}{4} \leq w \leq \frac{3\pi}{4} \\ &= e^{-j2w} \text{ for } 3\frac{\pi}{4} < \left|w\right| \leq \pi \end{aligned}$$

Design the filter using Hamming window also draw linear phase realization.

6. (a) Write a short note on 'Decimation by integer factors'.

(b) Explain the application of DSP processor (Texas-320).

(c) If the order of filter N = 2 find the transfer function at IIR filter (poles of IIR filter).