T. E | Sem I | Inst / CBGS / May 17/09/06/12 Q. P. Code: 597800

Total Marks: 80

N.B.: (1) Question no. 1 is compulsory

- (2) Solve any three questions from question no. 2 to question no. 6.
- (3) Assume suitable data if required.
- 1. Solve any four questions.

20

- a) State and prove Parseval's theorem.
- b) If x₁(n) & x₂(n) are two periodic sequences given below, find the convolution between them.

$$x_1(n) = (1,-3,0,1) & x_2(n) = (1,1,1,0)$$

- c) Prove that $\int_{-\infty}^{\infty} x^2(t)dt = \int_{-\infty}^{\infty} x_e^2(t)dt + \int_{-\infty}^{\infty} x_0^2(t)dt$
- d) Find the initial value and final value of the following Z-domain signal

$$X(z) = \frac{1}{1 - z^{-2}}$$

- e) State all the properties of Laplace transform & derive time shifting property.
- 2. (a) Find inverse Laplace Transform for all possible ROCs.

10

$$x(s) = 3s + 7$$
.

(b) Let
$$x(n) = \delta(n) + 2\delta(n-1) & h(n) = 2\delta(n+1) + 2\delta(n-1)$$
 compute $y(n)$.

10

 (a) Determine whether following signals are periodic or not. If periodic, find fundamental period.

4

i.
$$x[n] = \cos\left(\frac{\pi n}{2}\right) - \sin\left(\frac{\pi n}{8}\right) + 3\cos\left(\frac{\pi n}{4} + \frac{\pi}{3}\right)$$

ii.
$$x(t)=3\cos\left(5t+\frac{\pi}{6}\right)$$

(b) Find whether the signals are Energy or power signal.

6

i.
$$x(t)=A e^{-10t}u(t)$$

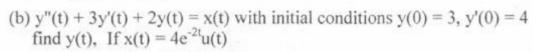
ii.
$$X[n] = u[n]$$

(c) Sketch a given signal:

10

$$x(t) = 2u(t) - u(t-2) + u(t-4) - r(t-6) + r(t-8)$$

[TURM OVER]


2

Q. P. Code: 597800

4. (a) Determine whether following systems are static or dynamic, linear or non-linear, time variant or invariant, causal or non causal & stable or unstable.


- $y(t) = x(t) \cos(100\pi t)$
- $y(n) = 2x(2^n)$

5. (a) Find trigonometric Fourier series of following signal

 $x[n] = (0.6)^n u[n] + (0.9)^n u[n]$

(b) Find out Z - Transform and R.O.C. of following signals.

6. (a) State the relationship between Laplace and Fourier transform

- $x[n] = 2^n u[n] + 3^n u[-n-1]$

(b) Find odd and even part of given signal.

 $x(t)=1+t \cos t+t^2 \sin t+t^3 \sin t \cos t$

 $x(t)=(1+t^3)(\cos^3 10 t)$ ii.

10

$$X[z] = \frac{(1 - e^{-a})z}{(z - 1)(z - e^{-a})}$$