Q. P. Code: 38425

Note: 1. Question no. 1 is compulsory

2. Attempt any three questions from remaining five questions

3. Figures to the right indicate full marks
4. Assume suitable data whenever necessary

Duration: 03 hours

Marks: 80

- Q.1. a. Explain the terms Signal level and bias changes, filtering and impedance matching.
 - b. Draw and explain circuit diagram of zero crossing detector.

20

- b. Explain the characteristics of digital data.
- c. Design a high-impedance amplifier with a voltage gain of 42.
- d. The resistors in a bridge are given by $R_1 = R_2 = R_3 = 120\Omega$ and $R_4 = 121\Omega$. If the supply is 10.0V, find the voltage offset.
- Q.2. a. What is the need for 3 op-amp instrumentation amplifier? Mention the applications of instrumentation amplifier. Explain any one in detail.
 - b. What are the advantages of active filters over passive filters? Design a second-order low-pass filter at a high cut off frequency of 1 kHz.
- Q.3. a. Draw and explain circuit for ideal differentiator with waveforms. Discuss the problems associated with ideal differentiator and draw the circuit diagram for practical differentiator.
 - b. Draw and explain circuit diagram of absolute value circuit using op-amp and sketch the input and output waveforms. Discuss its advantages over traditional diode rectifier.
- Q. 4. A sensor resistance changes linearly from 100 to 180Ω as temperature changes from 20° to 120°C. Find a linear equation relating resistance and temperature.
 - b. Draw and explain the principle and construction of metal strain gauges. What is the signal conditioning associated with it.
- Q.5. a. Design and explain operation of Astable multivibrator using IC555.
 - b. A CdS cell has a dark resistance of $100k\Omega$ and a resistance in a light beam of $30k\Omega$. The cell time constant is 72ms. Devise a system to trigger a 3-V comparator within 10ms of the beam interruption.
- Q.6. Write short notes on: (any four)

20

- a. Sample and hold circuit
- b. PLL
- c. Voltage regulator IC 723

- d. Data Acquisition System
- e. SMPS
- f. Weighted resistor DAC