INSTRU

TE/II/ INST/ Signal Conditioning Ctt. design/ NOV14

Q.P. Code: 14904

28/11/14

[Total Marks: 80

(3 Hours)

- (2) Attempt any three questions from remaining five questions.
- (3) Figures to the right indicate full marks.

Question No. 1 is compulsory.

(4) Assume suitable data wherever necessary.

10

10

1. (a) Explain the terms:

N.B.: (1)

- (i) Signal level and Bias changes
- (ii) Impedance matching and concept of loading.
- (b) Draw and explain circuit for zero crossing detector.
- (c) Explain lead compensation in bridge circuits.
- (d) The resistors in a bridge are given by $R_1 = R_2 = R_3 = 120 \Omega$ and $R_4 = 121\Omega$. If the supply is 10.0V, find the voltage offset.
- (a) Draw and explain circuit for ideal differentiator with waveforms. Design a
 differentiator to differentiate an input signal that varies in frequency from 10Hz
 to about 1KHz.
 - (b) Discuss the applications of Instrumentation amplifier. explain one in detail.
- 3. (a) Draw and explain circuit diagram of absolute value circuit using op-amp. Discuss its advantages over traditional diode rectifier.
 - (b) What are the advantages of Active filters over passive filters. Design a second order low-pass Butterworth filter at a high cut-off frequency of 1KHz.
 - 4. (a) Draw and explain the principle and construction of metal strain gauges. What is the signal conditioning associated with it?
 - (b) A sensor outputs a range of 20.0 to 250mV as a variable varies over tis range. 10 Develop signal conditioning so that it becomes 0 to 5V. The circuit must have very high input impedance.

[TURN OVER

GN-Con. 8758-14.

Q.P. Code: 14904

2

- 5. (a) What is a Multivibrator? Design Astable multi-vibrator for frequency of 1KHz and duty cycle of 75%, state its applications.
 - (b) Design an adjustable voltage regulator using LM317 to satisfy the following 10 specifications.

Output voltage $V_0 = 5$ to 12V

Output current $I_o = 1.0A$

- 6. Write short notes on any four of the following:
 - (a) Sample and hold circuit
 - (b) V to F converter
 - (c) Dual slope A to D Converter
 - (d) PLL
 - (e) Data logger
 - (f) SMPS.

GN-Con. 8758-14.

20