Q.P.Code:16055

Time: 3 Hours Marks: 80
Please check whether you have got the right question paper.

- N.B.: 1. Question No. ONE is compulsory
 - 2. Solve any THREE out of remaining questions
 - 3. Assume suitable data if required
- Q1. Solve the following

20 Marks

- A. Show the current drawn by CMOS inverter on VTC and justify that CMOS inverter draws maximum current during switching.
- B. Compare all types of MOSFET based inverters. Clearly draw their circuits and also mention their advantages and limitation/drawbacks.
- C. Two lines on an interconnect level are separated a spacing of S=0.60 μ m. Each individual line has w=0.30 μ m, T_{ox} =1.0 μ m and t=1 μ m. Calculate the coupling capacitance per unit length C_C . Also find the coupling capacitance if the interaction length is 25 μ m.
- D. In short, explain what is pass transistor logic? With suitable example explain when you will prefer pass transistor logic and when transmission gate.
- Q2. A. Calculate tfall using average current method for CMOS inverter with following parameters:

 05 Marks

Power supply voltage V_{DD} =3.2 V Output load capacitance = 0.1 pF $\mu_n C_{ox}$ =20 $\mu A/V2$ (W/L)_n=20 $V_{T,n}$ =1.0 V

B. For the function Z = (A + B)(E + F)(H + I)

05 Marks

- (i) Domino CMOS circuit
- (ii) Draw an equivalent circuit for domino circuit by using equivalent transistor sizes with W/L=30/2 (both for NMOS and PMOS)
- C. Design CMOS inverter such that the switching threshold is $V_{th} = 1.2 \text{ V}$, with the following device parameters:

NMOS: $V_{T0,n} = 0.6 \text{ V}$ $\mu_n C_{0x} = 60 \text{ } \mu A/V^2$ PMOS: $V_{T0,p} = -0.8 \text{ V}$ $\mu_p C_{0x} = 20 \text{ } \mu A/V^2$ Assume $V_{DD} = 2.4 \text{ V}$ and $\lambda = 0$

10 Marks

- Q3. A. Design the circuit and draw layout for the function $Y = \overline{(D + E + F)(B + C + A)}$ using CMOS logic. Also find equivalent CMOS inverter circuit for simultaneous switching of all inputs assuming that $(W/L)_P=30$ for all PMOS transistors and $(W/L)_n=10$ for all NMOS transistors.
 - B. What are the problems of Domino logic? Also suggest remedy for these problems.

 10 Marks
- Q4. A. With neat diagrams explain the read and write operation of 3T DRAM cell.

 10 Marks
 - B. Explain in detail design strategy of 6T SRAM Cell. Also draw the layout for 6T SRAM cell.

 06 Marks
 - C. Draw MOSFET based Master Slave JK Flip Flop 04 Marks
- Q5. A. Construct the complementary static CMOS full adder. Now propose another full adder which will take less number of transistors as compared to complementary static CMOS full adder.

 10 Marks
 - B. Draw and explain 4 X 4 multiplier array.

06 Marks

- C. Justify that even if LEVEL 1 MOSFET model already exists there is necessity of LEVEL 2 MOSFET Model.

 04 Marks
- Q6. A. With suitable diagrams explain clock stabilization in VLSI Chip. 05 Marks
 - B. What is the need of input and output ports in CMOS circuits? Explain with neat schematic bidirectional IO port.

 05 Marks
 - C. Explain different components of leakage power in CMOS 05 Marks
 - D. Explain DIBL and velocity saturation in short channel device. 05 Marks
