Q.P.Code:16205

(3 hours)

[Total Marks: 80]



- N.B: 1) Question number 1 is compulsory
  - 2) Solve any three questions out of the remaining five questions
  - 3) In all four questions to be attempted.
  - 4) Figures to the right indicate full marks
- Q.1(a) A digital filter has following transfer function. Identify the type of filter and justify it

$$H(z) = \frac{1}{1 + 0.9z^{-1}}$$

(b) Compare FIR and IIR filter.

(05)

(c) What is multirate signal processing? Discuss important applications of multirate signal Processing.

(05)

(d)  $x(n) = 4\partial(n) + 3\partial(n-1) + 2\partial(n-2) + \partial(n-3)$  is a six-point sequence.

(05)

- (i) Find p (n) if  $P(k) = W_N^{2k} X(K)$  (ii) If Q(K) = X(K-3), find q(n).
- Q2) (a) Compute DFT of a sequence  $x(n) = \{1, 2, 2, 3, 1, 2, 2, 3\}$  using DIF-FFT algorithm. Compare computational complexity of DIFFFT with DFT for the given signal. (10)
  - (b) Design FIR filter using frequency sampling technique for the following specifications. (10)

$$H_d(e^{j\omega})=e^{-j3\omega}$$

$$\omega \leq \frac{\pi}{2}$$

$$H_d(e^{j\omega})=0$$

elsewhere

Q3 (a) Derive composite radix DITFFT flow graph for  $N=6=3\times2$ 

(10)

(b) Design a digital Butterworth Low pass IIR filter using Impulse invariant technique by taking T =1 sec to Satisfy following specifications (10)

$$0.707 \le |H(e^{j\omega})| \le 1.0$$

$$0 \le \omega \le 0.3\pi$$

$$|H(e^{j\omega})| \leq 0.2$$

 $0.75\pi \le \omega \le \pi$ 

Q4) (a) The transfer function for discrete time causal system is given by

(10)

$$H(z) = \frac{1-z^{-1}}{1-0.2z^{-1}-0.15z^{-1}}$$

- i. Draw Direct Form-I and Direct form-II realization structure.
- ii. Draw cascade and parallel realization
- iii. Find impulse response of the system.

Turn Over

- (b) If  $x(n) = \{2,3,4,5\}$ 
  - i. Find DFT of x(n) using DITFFT.
  - ii. If y(n) = x(n-1). Find DFT of y(n)
  - iii. m(n) = x(n) + j y(n). Find DFT of m(n) using above results only. (10)
- Q (5) (a)  $x(n) = \{1,2,3,2\}$  and  $h(n) = \{1,2,3\}$

(10)

- i. Find circular convolution between x(n) and y(n) using time domain and frequency domain method.
- ii.Find linear convolution between x(n) and h(n).
- iii. Compare circular convolution and linear convolution results. Comment on it.
- (b) Explain the effect of aliasing in impulse invariant technique

(05)

(05)

- (c)  $X(K)=\{26, -2+2j, -2, -2-2j\}$  find x(n) using IDIFFT algorithm.
- Q (6) (a) Explain the process of decimation with frequency spectrum.

(5\*4=20)

- (b) Explain in detail the effect of finite world length effects in digital filters.
- (c) Explain sub band coding of speech signal.
- (d) Impulse response of the FIR filter is  $h(n) = \{1,2,3,2,1\}$ , draw linear phase realization structure.