ELTY CB GS/II/DTSP! 29.11.2016 Q.P. Code: 588402 Discrete Time Signal processing (3 Hours) Total Marks: 80

(1) Q.1 is compulsory. N. B. :

- (2) Solve any three questions from remaining questions
- (3) Assume suitable data if it is required.

- Q.1 (a) Explain phase delay and group delay
 - (b) What are the advantages of digital filter over analog filter?
 - (c) State and prove frequency shifting property of DFT
 - (d) Compare: FIR filter and IIR filter.

$$Q.2.(a)(i) x(n)=\{1,2,3,4\} \text{ find DFT } X(k)$$

(ii) Using results obtained in part (i) and otherwise find DFT of following sequence

$$a(n)=\{4,1,2,3\}$$
 $b(n)=\{2,3,4,1\}$ $c(n)=\{3,4,1,2\}$ $d(n)=\{4,6,4,6\}$

(b)A digital filter is described by the following differential equation

[10]

$$y(n) = 0.9y(n-1)+bx(n)$$

- (i)Determine b such that |H(0)| = 1
- (ii)Determine the frequency at which |H(w)|=
- (iii) Identify the filter type based on the passband.
- Q3 (a) If x(n)={ 1 0 2 0 3 0 4 0}, Find X(K) using DIFFFT. Compare computational complexity of [10] above algorithm with DFT.
 - (b)Explain effect of aliasing in Impulse Invariant Technique

Using this method, determine
$$H(Z)$$
 if $H(s) = \frac{3}{(s+2)(s+3)}$ if $T = 0.1$ sec [10]

Q.4 (a) Design a Linear Phase FIR Low Pass filter of Length 7 and cut off frequency 1 rad/sec using

Hamming window. [10]

(b) if
$$x(n) = \{1,2,3,2\}$$
 and $h(n) = \{5,678\}$

- Find circular convolution using time domain method.
- Find circular convolution using DFT / IDFT method.
- Find linear convolution using circular convolution.

[10]

