Q. P. Code: 38833

(3 Hours)

- N.B. 1. Question No 1 is compulsory.
 - 2. Attempt any three questions out of remaining five.
 - 3. All questions carry equal marks
 - 4. Assume Suitable data, if required and state it clearly.

[20

- 1 Attempt any FOUR
 - With a relevant block diagram, explain duobinary signalling scheme. Why is it called correlative coding? Write the output for bitstream 001100.
 - 2 What is DBPSK? What advantage does it have over conventional PSK?
 - 3 Show the entropy is maximum when all the symbols of a discrete memoryless source are equiprobable.
 - 4 Why are line codes necessary? What are the different parameters which need to be examined before choosing a PCM waveform for a particular application?
 - 5 Contrast and Compare systematic and non-systematic block codes.
- 2 a Consider an alphabet of a discrete memoryless source having following source [10] symbols with their respective probabilities as 0.40, 0.20, 0.12, 0.08, 0.08, 0.08, and 0.04.
 - i) Create a Huffman Tree following the standard algorithm for the Huffman encoding, and compute the codeword and respective length of the codewords for each of the given sources symbols.
 - ii) Determine the average codeword length.
 - iii) Determine entropy of the specified discrete memoryless source.
 - iv) Determine the Coding efficiency
 - **b** Consider (3,1,2) convolution code with $g^{(1)}=100$, $g^{(2)}=101$ and $g^{(3)}=111$ [10]
 - i. Draw the encoder for this code
 - ii. Draw the state transition diagram
 - iii. Using state transition diagram, find the codeword for the sequence
 - iv. Derive the code transfer function.
- 3 a Explain 16-ary PSK with respect to the following terms:-

[10]

- 1. Modulator and Demodulator
- 2. Power spectral density and Bandwidth.
- **b** Consider a (7, 4) cyclic code generated by $g(x) = 1 + x^2 + x^3$. [10]
 - i) Design an encoder for systematic cyclic code generation using shift registers
 - ii) Using encoder implemented in (i) and not otherwise, find the code word for message (1001).
 - Suppose the received vector is $R = (0\ 0\ 1\ 0\ 1\ 1\ 0)$, find the syndrome using syndrome circuit.
 - iv) Find out the generator matrix for the above cyclic code.
- a Draw the block diagram of QPSK Transmitter and receiver and Sketch the waveform and [10] explain.
 - **b** Explain Direct sequence spread spectrum (DS-SS) with neat diagram. Explain [10] processing gain and Jamming Margin with necessary expressions.

TURN OVER

[10]

Consider a Systematic block code whose Parity check equations are: 5

$$P2 = m1 + m2 + m4$$

$$P1 = m1 + m2 + m3$$

$$P4 = m2 + m3 + m4$$

P3 = m1 + m3 + m4

Where mi are message bits and Pi are parity check bits. In a codeword parity bits appear before message bits.

- (i) Find Generator matrix (G) and Parity check matrix (H)
- Find the code words for the message vectors: 1001, 1101
- (iii) How many errors can the code correct and detect?
- (iv) If the received code word is 10011101, decode the message.
- The following circuitry is used to generate PN sequence with initial content (Seed) [10] as 1011.

- Write down the PN sequence.
- ii. Verify the balance property of PN Sequence.
- iii. Verify the Auto-correlation property of the PN sequence.
- What do you mean by eye diagram? What is its purpose? Mention the four [10] parameters observed from the eye pattern. Explain it with help of suitable illustration.
 - Justify that the probability of error in matched filter does not depend on the shape of [10] input signal. Derive the relevant expression.