TE- EXICSEM II (cosus) SE. Digital com.

QP Code: 31640

(3 Hours)

[Total Marks: 80

N.B.

1] Question no.1 is compulsory

- 2] Attempt any three questions out of remaining live questions
- 3] Assumptions made should be clearly stated
- 4] Illustrate answers with sketches wherever required

Q.1		Attempt any four	
Q.1	а	Describe the Shanon-Hartley capacity theorem.	5
		Consider a binary data sequence 10101010.Draw the waveforms for the	5
	U	given binary data sequence, using unipolar RZ and split phase Manchester.	,
	c	State two criteria which a spread-spectrum communication system must	50
		satisfy. Justify that the spread-spectrum signals are transparent to the	1 E)
		interfering signals, and vice-versa.	P
	4	Explain the Coherent and non coherent digital modulation techniques.	5
			5
	е	Define code rate, code efficiency, systematic and non systematic in the context of linear block code.	
		context of linear block code.	
Ω		<u></u>	
Q.2		Consider the fitte course exmbole of a discrete memoryless swirce and their	10
	a	Consider the five source symbols of a discrete memoryless source and their	10
		respective probabilities as 0.4, 0.2, 0.2, 0.1, and 0.1.	<u> </u>
		i) Create a Huffman Tree for Huffman source coding technique to find the	
		codeword and length of codewords for each source symbol.	
		ii) Determine the average codeword length of the specified discrete	
		memoryless source.	
		iii) Comment on the results obtained	
1	Ь	Describe in convolution code, Time domain approach, and Transform-	10
		domain approach to determine encoder output.	-
Q.3			
	a .	Justify that the probability of error in matched filter does not depend on the	10
<u> </u>	_	shape of input signal. Derive the relevant expression.	
	b	For a Quadrature Phase Shift Keying (QPSK), Explain the modulator,	10
,		demodulator, Bandwidth and advantages:	
Q.4			ļ
	a	Describe coherent détection method of binary FSK signals. Also draw power	10
		spectra for BFSK(modulated signal.	
	Ь	In a digital communication system, the bit rate of a bipolar NRZ data	10
	.	sequence is Mbps and carrier frequency of transmission is 100MHz.	
		Determine the symbol rate of transmission and the bandwidth requirement of	
		the communications channel for	
		i) 8-arý PSK system	
		ii) 16-ary PSK system.	
Q.5			
	a	The Generator matrix of (6, 3) systematic block code is given below:	10
	1	[100011]	
4		G = 010101	
100			
4.		[001110]	
·		Find the code Vectors, parity check matrix, and the error syndrome.	
			,
	_		

	b	A (7, 4) cyclic code is described by a generator polynomial $g(x) = x^3 + x + 1$	10
	•	 i) Find out the generator matrix ii) Parity checks matrix. iii) Draw the syndrome calculator and explain how received message 	
Q.6		is corrected? Attempt the following (any two).	<u> </u>
	а	Write short note on Intersymbol interference (ISI) and.	10
	b	Explain with the help of block diagrams and waveforms, the following techniques of spread spectrum communication. (a) Direct sequence (b) Frequency hopping.	•
	С	What are different decoding methods of convolutional codes? Explain any one in detail.	01d

W Col