Paper / Subject Code: 30603 / R F MODELING AND ANTENNAS T.E. SEM V / ELTL / CREDIT BASE / NOV 2018 / 29.11.2018

QP CODE: 22616

	(3 Hours)	Marks: 8
N.B.	 (1) Question No. 1 is compulsory. (2) Solve any three questions from the remaining five. (3) Figures to the right indicate full marks (4) Assume suitable data if necessary and mention the same in answer seconds. 	heet.
Q1 (a)	Explain the Hazards of Electromagnetic Radiation.	20
(b)	Explain the radiation mechanism of antenna with single wire system.	20
(c)	Explain the use of Richard transformation and Kurodas Identity in RF filter design	
(d)	Derive an expression for array of two isotropic sources with same amplitude and in phase.	
Q2 (a)	Explain the RF behavior of resistor, capacitor and inductor.	
(b)	Discuss the design procedure for filter using image parameter method.	10
Q3 (a)	Design a maximally flat LPF with a cut off frequency of 2 GHz. The generator and load impedance is 50 Ω with 15 dB insertion loss at 3GHz with discrete LC components.	10
(b)	Derive an expression for array factor of N element linear array, where all elements are equally fed and spaced. Also find the expression for the position of principle maxima, nulls and secondary maxima.	10
Q4 (a)	A radio link has 15 watt transmitter connected to an antenna of 2.5 m^2 effective aperture at 5 GHz. The receiving antenna has an effective aperture of 0.5 m^2 and is located at a15 km line of sight distance from transmitting antenna. Assume lossless antennas. Find power delivered to the receiver.	10
(b)	Derive an expression for E field and H field of infinitesimal dipole antenna	10
Q5 (a)	What is folded dipole Antenna? Draw its typical structure and explain working mechanism. Give its advantages.	10
(b)	What is Dolph-Chebyshev array? Explain the steps involved in design of Dolph-Chebyshev array.	10
06	Write short notes	20

(a) Ground effects on Antenna (b) Log periodic Antenna

(c) Loop antenna (d) Horn antenna

Paper / Subject Code: 30603 / R F MODELING AND ANTENNAS

Attenuation versus normalized frequency for maximally flat filter prototypes.

Adapted from G. L. Matthaer, L. Young, and E. M. T. Jones, *Microwave Filters, Impedance-Matching Networks, and Coupling Structures*, Artech House, Dedham, Mass., 1980, with permission.

Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_0=1$, $\omega_0=1$, N=1 to 10)

N	21	R2	83	24	25	36	27	28	29	210	g_{11}
1	2,0000	(H)(H), [A CONTRACTOR OF THE CONTRACTOR	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Land State Constitution the sec	milana ingga mila mila dipunca a yang	a destre service englisher (e. 16-45) begi	and any and the same of the same and	a contract and a series	Park tal (1947) Seeman Park (Park) (1949) (1949)	an an ann an a was a color
2	1.4142	1.4142	1,0000								
.3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	()(H)(), }						
5	0.6180	1,6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	0.0000.1				
7	0,4450	1.2470	1.8019	2.0000	1.8019	1.2470	0,4450	1,0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1,0000	1.5321	1.8794	2,0000	1.8794	1.5321	-1.0000	0.3473	HEND, E	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0,9080	0.3129	1.0000

Source: Reprinted from G. L. Matthaer, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Marching Networks, and Compling Structures, Artech House, Dedham, Mass., 1980, with permission.