Paper / Subject Code: 32205 / Elective - I Microlectronics (DLOC)

T.E. SEM V / ELTL / CHOICE BASED / NOV 2018 / 12.12.2018

(3 Hours)

Max. marks: 80

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from the remaining five questions.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data if necessary and mention the same in answer sheet.
- Q.1 Attempt any 4 questions

[20]

- (a) List the steps involved in fabrication process of MOSFET.
- (b) Compare the output resistance of the cascade MOSFET current source to that of the two-transistor current source. Assume $I_{REF} = I_O = 100 \,\mu\text{A}$ in both the circuits, $\lambda = 0.01 \,\text{V}^{-1}$ for all transistors, and $g_m = 0.5 \,\text{mA/V}$.
- (c) Draw a mask layout of NMOS transistor.
- (d) Derive the equation for output resistance of common gate amplifier.
- (e) Draw the equivalent model for transformer and explain.
- (f) List the second order effects in MOSFET. Discuss any one of them.
- Q.2 (a) Why is scaling required? Discuss the various types of scaling.

[10]

(b) Consider the MOSFET current source in Fig. 2 (b) with $V^+ = 10$ V and $V^- = 0$, and the transistor parameters are: $V_{TN} = 1.8$ V, $\frac{1}{2} \mu_n C_{ox} = 20 \mu A/V^2$, and $\lambda = 0.01$ V⁻¹. The transistor width-to-length ratios are: $(W/L)_2 = 6$, $(W/L)_1 = 12$, $(W/L)_3 = 3$. Determine (i) I_{REF} , (ii) I_O at $V_{DS2} = 2$ V.

Fig. 2(b)

Q.3 (a) Consider the differential amplifier shown in Fig. 3(a). The transistor parameters are: $K_{n1}=K_{n2}=0.1 \text{ mA/V}^2$, $K_{n3}=K_{n4}=0.3 \text{ mA/V}^2$, and for all transitors, $\lambda=0$ and $V_{TN}=1 \text{ V}$. Determine the maximum range of common-mode input voltage.

P.T.O

Fig. 3(a)

- (b) With a neat circuit explain Bias Independent Current Source using MOSFET. [10]
- Q.4 (a) For the circuit shown in Fig. 4(a), let $V_{DD} = V_{SS} = 1.5 \text{ V}$, $V_{TN} = 0.6 \text{ V}$, $V_{TP} = 0.6 \text{ V}$, all channel lengths = 1 μ m, k_n '=200 μ A/V², k_p '=80 μ A/V², and λ =0. For $I_{REF} = 10 \mu$ A, find the widths of all transistors to obtain $I_2 = 60 \mu$ A, $I_3 = 20 \mu$ A, and $I_5 = 80 \mu$ A. It is further required that the voltage at the drain of Q_2 be allowed to go down to within 0.2 V of the negative supply and that the voltage at the drain of Q_5 be allowed to go up to within 0.2 V of the positive supply.

P.T.O

Draw a small signal equivalent structure of Diff-amp and derive the equation for [10] its CMRR. Q.5 Draw a neat diagram of Class B power amplifier. Derive equation for its (a) [10] efficiency. A CS amplifier utilizes an NMOS transistor with L=0.36 μ m and W/L=10; it was [10] fabricated in a 0.18- μ m CMOS process for which $\mu_n C_{ox} = 387 \,\mu$ A/V² and V_A ' = 5 V/ μ m. Find the values of g_m and A_0 obtained at $I_D = 10 \mu$ A. Q.6 Short notes on: (Attempt any four) [20] Short channel effects in MOSFET. (a) (b) Wilson Current Mirror. (c) MOS device capacitances. (d) Folded cascode MOS amplifier. Fabrication of inductors. (e)