Q.P. Code: 3387

		(3 Hours) [Total Marks:	10(
N.	B.:	 Question No. 1 is compulsory. Solve any Three out of remaining questions. Assume suitable data if required. 	
1.	Solv (a) (b) (c) (d) (e)	Design a circuit to keep LED 'ON' for 30 seconds once circuit is triggered. What is CMRR for op-amp and how to measure it practically? Explain first order active filter circuit. Design a 0.5A current source using IC7805. Assume RL =100. Explain 7490 Decade counter.	2(
2.	(a)	Design triangular waveform generator for frequency for 5 kHz and Vopp=6V using op-amp. Explain IC 741 based RC phase shift oscillator with proper waveforms. Design RC phase shift oscillator to produce sinusoidal frequency output of 5 kHz.	1(
3.	(a) (b)	Design a high pass second order filter for the cut off frequency of 1 kHz and passband gain AF=2. Write the advantages of precision rectifier. Explain half wave precision rectifier along with neat waveforms.	1(
4.	(a) (b)	Design a voltage regulator using IC 723 to give V0=5V and output current of 2A. Draw instrumentation amplifier using opamp and hence derive equation for output voltage. Explain zero crossing detector with neat diagram.	1
5.	(a) (b)	Draw and explain the functional diagram of IC 555 and explain its operation in astable mode. With the help of a neat circuit diagram explain the working of 74163 synchronous 4-bit binary counter. Also illustrate the cascading connections for 74163 based counters.	1(
6.		e short note on the following: 74181 Arithmetic Logic Unit. Current foldback protection. Any two applications of PLL 565. Voltage to frequency converter.	2(