ELTL/CBGS/V/Analog Comm. / 13-12-2016

Q.P. Code: 588102

10	**			N.
13	н	OH	B.C.	١
(3	R.R.	vu	13	J

[Total Marks: 80

- N.B.: (1) Question No.1 is compulsory.
 - (2) Attempt any three questions out of remaining five.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data if required and mention the same in answer sheet.
- 1. Solve any four :-

20

- (a) Justify why FM is more immune to noise.
- (b) Define noise factor and noise figure.
- (c) What is Pre-emphasis? Why is it used? Sketch and explain pre-emphasis circuit.
- (d) What is quantization? Explain types of quantization.
- (e) Why AGC is required in receivers? Differentiate between simple AGC and Delayed AGC.
- (a) With neat block diagram explain filter method of SSB generation. State 10 its drawbacks.
 - (b) Explain practical diode detector with delayed AGC.

10

- 3. (a) The antenna current of AM broadcast transmitter modulated to the depth of 40% by an audio sine wave is 11 Ampere. It increases to 12 Ampere as a result of simultaneous modulation by another audio sinewave. What is the modulation index due to this second wave?
 - (b) Derive mathematical expression for FM wave and its modulation index. 10
- 4. (a) Explain the operation of Foster seely discriminator with the help of circuit diagram and phasor diagram.
 - (b) In a broadcast superhetrodyne receiver having no RF amplifier, the loaded 0 of the antenna coupling circuit (at the input to the mixer) is 100.
 - (i) If the intermediate frequency is 455kHz, calculate the image frequency and its rejection at 1000kHz and at 25MHz.
 - (ii) In order to make the image frequency rejection of the receiver as good at 25MHz as it was at 1000kHz, calculate the loaded Q which an RF amplifier for this receiver would have.

TURN OVER

Q.P. Code: 588102

		2	
5.	(b) With	the and prove sampling theorem for low pass band limited signal. The help of block diagram and waveform explain generation and ection of Pulse Width Modulation.	10
6.	(a) (b) (c) (d)	short notes on any four of the following:- ISB Receiver. Aliasing error and Aperture effect. Slope overload distortion and granular noise. Frequency Division Multiplexing (FDM). Noise in communication system.	20