POWER ELECTRONICS-I

QP Code :591902

(3 Hours)

| Total Marks :80

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions out of remaining five questions.
 - (3) Figures to the right indicate full marks.
- 1. (a) Draw and explain dynamic turn on characteristics of SCR 5
 - (b) What is the need of commutation. Explain the any one method of forced 5 communication.
 - (c) Define and explain performance parameters of controlled rectifier 5
 - (d) Draw and explain boost converter. Derive the relation for output load voltage. 5
- 2. (a) Draw and explain semi-converter with the help of circuit diagram and 10 waveforms.
 - (b) Draw and explain Buck-Boost converter with the help of circuit diagram 10 and waveforms Derive the relation for load voltage.
- 3. (a) Explain the working of three phase bridge inverter in 120° conduction mode 5 with resistive load. Draw waveforms.
 - (b) Draw the load voltage waveform for the circuit given below.

- (c) draw and explain SOA of power MOSFET.
- 4. (a) A single phase semi converter is operated from 230V, 50Hz ac supply. 10
 The load resistance is 20Ω. The average output voltage is 30% of the max.

 Possible average output voltage. Determine
 - (i) Firing angle
 - (ii) RMS and Average output current
 - (iii) RMS and average thyristor current
 - (b) Explain in brief single phase cyclo-converter with circuit diagram and 5 waveforms.

[Turn Over

Explain the need of neutrilisation of harmonics of inverters.

- (a) Explain the working of AC full wave control circuit using DIAC-TRIAC. 10 Draw waveforms across load and TRFAC for $\alpha = 60^{\circ}$. Derive relation for
 - (b) Explain the multiple pulse width modulation in inverters. Explain the 10 neutrilisation of harmonics.
- 6. (a) Single phase full bridge inverter has a resisistive load of $R = 3\Omega$ and the 10 dc input voltage Edc = 50V. compute
 - (i) The average output power Po
 - (ii) The average and peak current of each thyristor.
 - (b) Draw and explain switching cha. of GTO
 - (c) Draw and explain snubber circuit.

RMS load voltage.