Paper / Subject Code: 88923 / Signal Processing

Wednesday, May 22, 2019 Signal processing 67622

02:30 pm - 05:30 pm

1T00826 - T.E.(ELECTRICAL)(Sem VI) (Choice Based) / 88923 -

(3 Hours)

[Total Marks: 80]

N.B.:

- 1) Question No.1 is compulsory.
- 2) Attempt any three from remaining questions.
- 3) Figures to right indicate full marks.
- 4) Assume suitable data if necessary.
- Q1 Solve any **Five** Questions.

- 20 5
- (a) Define periodic and non periodic signals and check the periodicity of signal $x(n) = \left(\sin\frac{2\pi n}{3} + \cos\frac{2\pi n}{5}\right)$. Find its fundamental period if the signal is periodic.
- (b) Check whether the system $y(n) = a^n x(n)$ is static/dynamic, linear/
 nonlinear and Time variant/ Time Invariant.
- (c) The transfer function of LTI system is $H(Z) = \frac{z-1}{(z-2)(z+3)}$ Determine the impulse response.
- (d) Find the 4-point DFT of x (n) = $\{1, -2, 3, 2\}$ using matrix method.
- (e) Compare analog and digital filters and state requirement of digital filter to be stable and causal.
- (f) Determine whether the system $H(Z) = \frac{1+2z^{-1}}{1+\frac{6}{5}z^{-1}+\frac{9}{25}z^{-2}}$ is both Causal and Stable.
- Q 2(a) Sketch the signal x(n) = 2u(t+2) 2u(t-3)
 - (b) Find even and odd components of signal $x(n) = \{5, 4, 3, 2, 1\}$
 - (c) Find Z-transform of following signals. 10 i. $x(n) = 2^n u(n-2)$

ii.
$$x(n) = \left(\frac{1}{2}\right)^n u(n) * \left(\frac{1}{4}\right)^n u(n)$$

- 3.(a) If DFT of $\{x(n)\} = X(k) = \{4, -j2, 0, j2\}$, using properties of DFT, find
 - i. DFT x(n-2)
 - ii. DFT x(-n)
 - iii. DFT x*(n)
 - iv. DFT $x^2(n)$
 - v. DFT x(n) * x(n)

Paper / Subject Code: 88923 / Signal Processing

- Find the inverse Z-transform of $X(Z) = \frac{3z^{-1}}{(1-z^{-1})(1-2z^{-1})}$ if 10 a.ROC |Z| > 2b.ROC|Z| < 1c. ROC 1 < |Z| < 2
- 10 4.(a) Find the 8-point DFT by radix-2, DIT FFT algorithm. $x(n) = \{2, 1, 2, 1, 2, 1, 2, 1\}$ (b) Determine the response of LTI system governed by the equation, 10 y(n) - 0.5y(n-1) = x(n) for the input $x(n) = 5^n u(n)$, and initial condition y(-1) = 2.
- A low pass filter is to be designed with the following desired frequency 10 response: $H_d(e^{j\omega}) = \begin{cases} e^{-j2\omega}, & -\frac{\pi}{4} \le \omega \le \frac{\pi}{4} \\ 0, & -\frac{\pi}{4} \le \omega \le \frac{\pi}{4} \end{cases}$ Determine the filter coefficients h(n) if the window function is defined as:

 $w(n) = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & otherwise \end{cases}$ A linear shift invariant system is described by the difference equation

- 10 $y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + x(n-1)$ with y (-1) =0 and y(-2) = -1. Find the natural response of the system.
- 5 6.(a)Find DTFT of sequence $x(n) = n \left(\frac{1}{2}\right)^n u(n)$ Find the energy of signal $x(n) = \left(\frac{1}{2}\right)^n$ $n \ge 0$ 5
- (c) Discuss the method of Bilinear transformation for Design of IIR filter. 10