Paper / Subject Code: 36904 / CONTROL SYSTEM -I

T.E(Ekohical) Sem-VI CBGS

Q.P. CODE: 38390

Time: 3 Hours

Marks: 80

71218 (V3)

Note:

- Question No. 1 is compulsory.
- Answer any three from the remaining five questions.
- Assume suitable data if necessary and justify the same.

Q. 1 Answer any FOUR of the following

20

- a. What is the significance of gain margin and phase margin of a system?
- b. Define break-away point and break-in point in root locus plot of a system.
- c. Represent the given system in phase variable form of state space representation. Also draw SFG.

$$G(s) = \frac{s^2 + 35s + 120}{(s + 8)(s + 9)(s + 7)}$$

- d. Compare open loop and closed loop control systems with the help of suitable example.
- e. Obtain series electrical analog of the following system.

Q.2 Reduce the block diagram shown below to a single block representing the 10 fransfer function, G(s) = C(s)/R(s)

Page 1 of 3

Paper / Subject Code: 36904 / CONTROL SYSTEM -

T. E CElectrical) Sem-VI CBGS

O.P. CODE: 38390

10

b. Draw Bode plot for the following unity feedback system, determine 10 ω_{gc} , ω_{pc} , PM, GM and comment on the stability of the system.

$$G(s) = \frac{(s+3)}{(s+2)(s^2+2s+25)}$$

Using Mason's rule, find the transfer function, G(s)=C(s)/R(s) for the Q.3 system represented by

Given the system represented in state space as follows:

$$\hat{x} = \begin{bmatrix} 1 & +1 & 1 \\ 2 & 1 & 3 \\ -2 & -1 & -3 \end{bmatrix} x + \begin{bmatrix} 7 \\ 1 \\ -2 \end{bmatrix} u$$

$$v = \begin{bmatrix} 1 & -3 & 4 \end{bmatrix} x$$

Convert the system to one where the new state vector, z is

$$\vec{z} = \begin{bmatrix} 4 & -1 & 0 \\ 2 & 3 & -2 \\ 8 & 5 & 1 \end{bmatrix} \hat{x}$$

a. For the following unity feedback system using Routh Hurwitz criteria Q.4 determine the range of K to ensure stability. What should the value of K for the system response to oscillate, and determine the frequency of oscillation.

$$G(s) = \frac{K(s^2 + 1)}{(s+1)(s+2)}$$

Obtain Laplace transform solution of the following system. Consider unit 10 step signal as input to the system

$$\hat{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} x + \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = [1 \ 0 \ 0]x$$

a. Derive and explain Nyquist stability criteria.

10

For each pair of second order system specifications that follows, find the 10 location of the second order pair of poles.

Paper / Subject Code: 36904 / CONTROL SYSTEM -I

T.E (Electrical) Sem-VI CBGS

Q.P. CODE: 38390

a. A unity feedback system has an open-loop transfer function

$$G(s) = \frac{K(s+1)}{s(s-1)}$$

 $G(s) = \frac{K(s+1)}{s(s-1)}$ Sketch the root locus and determine the range of K for the system to be stable.

b. A unity feedback system has the following forward path transfer function:

- a. Evaluate system type, Ko Kv and Ka
- b. Use answer in (a) to find steady state errors for standard step, ramp and parabolic inputs
- c. Explain how many integrations in the forward path are required to get zero steady state error for standard step, ramp and parabolic