TE Sem I Electrical CB Gs

Comma Engineering

Q.P.Code: 39121

4/1

31-5-2018

(3 Hours)

[Total Marks: 80]

Instructions:

- 1. Question No: 1 is compulsory.
- 2. Answer any three from the remaining questions.

			30 W N
1			(5×4)
	a)	State and prove Sampling theorem.	
	b)	Write down the basic principle used in Super heterodyne receivers.	
	c)	Explain the need of modulation in a communication system.	
	d)	Brief the properties of entropy	
2	a)	Explain FET Reactance modulator for FM generation.	(10)
	b)	A modulating signal m(t)=10 cos $(2\pi \times 10^3 \text{t})$ is amplitude modulated with a carrier signal c(t)=50 cos $(2\pi \times 10^5 \text{t})$. Find the modulation index, the carrier power, and the power required for transmitting AM wave.	(10)
3	a)	Generate Huffman's code for the five symbols of a source having probabilities 0.5, 0.25, 0.125, 0.0625, and 0.0625. Find the entropy of the source, average code word length and efficiency of the code.	(10)
	b)	Explain the generation of a Delta modulated signal. State the drawbacks of DM and suggest methods to overcome it.	(10)
4	a)	A message 101101 is to be transmitted in cyclic code with a generator polynomial $G(D) = D^4 + D^3 + 1$. Obtain the transmitted code word. How many check bits does the encoded message contain? Draw the encoding arrangement for the same.	(10)
	b)	C DCM communication system. Explain the	(10)
5	a)	Explain the working principle of an BPSK modulator.	(10)
	b)	With a neat block diagram, explain the operation of Armstrong Frequency	(10)
6		modulation system.	(20)
U	a) .	Write short notes:	

Write short notes:

- 1) Optical Fiber Communication
- 2) Quantization process.
- 3) Advantages of Digital Communication Systems