Q. P. Code: 13231

(Revised Course) (3 Hours)

[Total Marks: 80

N.B.:

- Question 1 is compulsory. Answer any three questions from remaining.
- 2. Use of "Heat Exchanger databook" is permitted.
- 3. Assume data if necessary and specify the assumptions clearly.
- 4. Draw neat sketches wherever required.
- Answer to the sub-questions of an individual question should be grouped and written together i.e. one below the other.
- (a) Explain different fouling mechanisms.

[05]

(b) What are the limitations of Wilson, Lobo and Hottel method?

[05]

(c) Explain different streams in shell with neat sketch.

[05]

05

[10]

[10]

(d) What are the advantages and disadvantages of plate heat exchangers, compared with conventional shell and tube heat exchanger?

2. 80,000 kg/h benzene is cooled from 70°C to 50°C using cold process stream available [20] at 30°C. A shell and tube heat exchanger is designed using commercial software for this duty. Shell side pressure drop is predicted by software is 0.2767 bar. Compare this output with Bell-Delaware method and comment on result.

Tube mean temperature is maintained at 50.51°C.

Properties of Benzene								
	In	out	2500	In	Out			
$Cp, kJ/kg \cdot K$	1.8840	1.8280	μ , cP	0.3371	0.4314			
$k, W/m \cdot K$	0.1308	0.1373	SG	0.8320	0.8510			

Shell and Tube heat exchanger configuration.								
Number of tubes	136	989 T	Pitch 1.25△	23.81	mm			
Tube OD	19.05	mm	Tube length	6096	mm			
Shell ID	336.55	mm						
Bundle diameter	323.85	mm	Sealing strips pairs	1				
Tube sheet thickness (each)	38	mm	No. of baffles	16				
Baffle spacing	342.9	mm	Baffle cut	37.74	%			
(centre-centre)								

- 3. (a) Explain construction and working of Box type furnace with neat sketch.
 - (b) Draw all TEMA shells and explain applications of each in brief. [10]
- 4. (a) Explain construction working of once through Thermosyphon reboiler. [10]
 - (b) What are the principle kinds of baffles? Explain in brief with neat sketch.

Q. P. Code: 13231

- 5. (a) A kettle type reboiler is operated over 14.22°C temperature difference. Overall [10] heat transfer coefficient is 797 W/m²-K. Critical pressure of evaporating liquid is 38.29 bar and shell side operating pressure is 17.24 bar. There are 366 tubes (183 U-tubes) of 25.4 mm OD and 4800 mm length are used over square pitch of 31.75 mm. Check whether operating flux is within safe limit.
 - (b) Explain limitations of horizontal and vertical condensers.

[10]

6. (a) Plate type Heat Exchanger, with 855 numbers of PL22 plates, cools 150000 kg/h [1 of a ethanol from 70 to 30°C using 88297 kg/h Cooling water.Plate are made of stainless steel (k = 15 W/m · K) plates of 0.5 mm thick. Calculate the overall heat transfer coefficient and also pressure drop in both the fluids at these service condition.

Data:

Property	Cooling water	Ethanol	
Specific heat, $kJ/kg \cdot K$	4.179	2.46	
Viscosity, cP	0.705	0.67	
Thermal conductivity, $W/m \cdot K$	0.62	0.171	
Density, kg/m^3	995.0	772.0	
Fouling factor, $m^2 - K/W$	0.00012	0.0001	

(b) What is the importance of Bridgewall temperature in furnace design?

[10]

