2/2015

TE VI / CBus/Chem/ H. TO II

Heat Transfer Operations—II

(3 Hours)

(3 Hours)

(1 CBus/Chem/ H. TO II

(A Proposition of the code: 6366)

(Bus/Chem/ H. To II

(Bus/Chem/ H. To II

(Proposition of the code: 6366)

(Proposition of the code: 6366)

(Revised Course)

(1 Total Marks: 80)

N.B.:

- Question 1 is compulsory. Answer any three questions from remaining.
- 2. Use of "Heat Exchanger databook" is permitted.
- 3. Assume data if necessary and specify the assumptions clearly.
- 4. Draw neat sketches wherever required.
- 5. Answer to the sub-questions of an individual question should be grouped and written together i.e. one below the other.

.1.	(a) What are the advantages of Plate Heat Exchanger?(b) How do you ensure negative pressure in furnace while design?(c) Explain working of reflux condenser with neat sketch.	[05] [05]
	(d) How does Kettle type reboiler work?	[05]
2.		[05]
	There is a requirement to cool 150,000 kg/h of a ethanol from 70 to 30°C. Cooling water will be used for cooling, with inlet and outlet temperatures of 20 and 60°C. Design a gasketed-plate heat exchanger for this duty with stainless steel ($k = 15 W/m \cdot K$) plates of 0.5 mm thick. Maximum operating pressure and allowable pressure for both fluids is 2 barg and 0.6 bar respectively and maximum permissible velocity is $3 m/s$. Show one iteration of design calculation including thermal and hydrodynamic and if design is not satisfactory in first iteration then comment on the calculations? Data:	

Property	Cooling water	Ethanol
Specific heat, $kJ/kg \cdot K$	4.179	2.46
Viscosity, cP	0.705	0.67
Thermal conductivity, $W/m \cdot K$	0.62	0.171
Density, kg/m^2	995	772

3.	(a)	Explain use of sealing strips in shell and tube heat exchanger.	[04]
•	(b)	How do overdesign influence operation of heat exchangers like condenser, reboiler	[04]
		and coolers?	÷
¥	(c)	Explain working of horizontal thermosyphon reboiler with schematic sketch.	[12]
4.	(a)	Write Algorithm for Lobo-Evans method.	[15]
	(b)	Explain operation of barometric condenser.	[05]

QP Code: 6366

5. A shell-and-tube heat exchanger has the following configuration:

The shell-side fluid is a hot water (mass flow = 7375 kg/h) with the following properties:

Specific heat, $kcal/kg \cdot K$ 4.3706 Viscosity, cP 0.3307 Thermal conductivity, $W/m \cdot K$ 0.5787 Specific gravity 0.9673

Using Bell-Delaware method, calculate the shell side heat transfer coefficient for following data.

Summary					
Number of tubes	34		Pitch 1.25△	31.75	mm
Shell ID	279.401	mm	No. of baffles	35	n de
Bundle diameter	254.88	mm	Baffle spacing	75	mm
			(centre to centre)		
Tube OD	25.4	mm	Baffle cut	24.48	%
Sealing strips	none			•	

6. (a) 9072 kg/h of saturated cylcohexane vapour will be condensed at 83.33°C and 1.103 bar a using a tube bundle containing 147 tubes arranged for single pass. The tubes are 1 in. OD, 14BWC thickness with a length of 6096 mm. Calculate the condensing-side heat-transfer coefficient for the tube bundle is vertical and condensation occurs inside the tubes. Also calculate for horizontal condenser with condensation over tube, and comment on result.

Data:

Density of condensate, kg/m3	791.0
Viscosity of condensate, cP	0.3311
Thermal conductivity of condensate, $W/m \cdot K$	0.1512
Specific heat of condensate, $kJ/kg \cdot K$	2.1562

(b) What, if fouling is not considered while exchanger design?
