TE- Sem-VI (CBSG5) - chemical - CRE-III Chemical Reaction Engineering-II (PCODE: 574400)

Duration: 3 hours

Total Marks: 80

- N. B. (i) Question number one is compulsory.
 - (ii) Answer any three questions from the rest.
 - (ii) Assume suitable data wherever necessary.
- Q.1.a) Write short note on Fixed bed reactor

(05)

- b) What is significance of Hatta number in Fluid Fluid reactions?
- (05)
- c) Differentiate between Physical adsorption and Chemical adsorption

(05)

- d) Define Residence Time Distribution (RTD) and explain significance of E (t) (05) curve.
- Q.2.a) An 8.01 gm sample of Glaucosil is studied with N₂ adsorption at -195.8°C. The (12) following data are obtained:

Pressure, mmHg	6	25	140	230	285	320	430	505
Volume adsorbed, cm ³ (at 0°C & 1 atm)	61	127	170	197	215	230	277	335

The vapor pressure of N₂ at -195.8°C is 1 atm. Estimate the surface area in m²/gm of the sample. The density of N₂ is 0.808 gm/cc.

b) Write short note on Slurry Reactor

(08)

- Q.3a) A batch of solids of uniform size is treated by gas in a uniform environment. (10) Solid is converted to give a non flaking product according to the shrinking core model. Conversion is about 7/8 for a reaction time 1 hr., conversion is complete in 2 hours. What mechanism is rate controlling?
 - b) Write short note on the reactors used for solid -fluid non catalytic reactors.

(10)

TURN OVER

Q.4) We plan to remove 90% of an undesirable impurity (A) present in a gas stream (20) by absorption in water containing reactive B in a packed tower.

A and B reacts in the liquid as follows:

$$A(g \longrightarrow l) + B(l) \longrightarrow R(l), -r_A = kC_AC_B$$

Determine the volume of tower needed for countercurrent operation using the following data

$$F_g = 90000$$
 mol/h at $\pi = 10^5$ Pa , $P_{A in} = 1000$ Pa, $P_{A out} = 100$ Pa

 $F_l = 900000 \text{ mol/h}, C_{B \text{ in}} = 55.56 \text{ mol/m}^3$

$$k_{Ag} a = 0.36 \text{ mol/(h.m}^3.Pa), \quad k_{Al} a = 72 \text{ h}^{-1}, \quad a = 100 \text{ m}^2/\text{m}^3$$

 $f_i = (V_i/V) = 0.08$, $D = 3.6 \times 10^{-6} \text{ m}^2/\text{h}$

 $C_U = 55556 \text{ mol H}_2\text{O/m}^3 \text{ liquid, at all C}_B$

$$H_A = 10^5 (Pa.m^3)/mol$$
 and $k = 2.6 \times 10^7 m^3/(mol.h)$

Q.5) A tracer with number of dividing baffles is to be used to carry out the reaction (20)

 $A \rightarrow R$. The results of a pulse tracer test are given below

t, min	0	4	8	12	i 2	16	20	24
Traceroutput Concentration (mg/l)	0	3	5	8	4	2	1	0

- a) Plot C (t), E (t) and F (t) curves.
- b) Calculate mean residence time.
- c) Calculate Variance and standard deviation.
- d) Find the fraction of material that has spent time between 4 and 8 min in the reactor
- Q.6.a) In a Plug Flow Reactor, CO & H₂ are passed over Ni catalyst to generate (15) methane.

$$CO + 3H_2 \leftarrow CH_4 + H_2O$$

The rate equation is

$$-r' = \frac{1.1P_{CD}P_{H_2}^{0.5}}{1 + 1.5P_{H_2}}, mol/(gcat.h)$$

The reaction is carried out under isothermal conditions at one atmosphere. CO and H₂ are fed in stoichiometric proportion with 1 mol/h of CO. Calculate the amount of catalyst required for 20% conversion of CO.

Data: Bulk density of catalyst = 480 kg/m³

b) Explain Tanks in series Model.

(05)