Q.P. Code: 26251

[5]

Duration: 3 hours Total Marks: 80

- N. B. (i) Question number one is compulsory.
 - (ii) Answer any **three** questions from the rest.
 - (ii) Assume suitable data wherever necessary.
- Q1 A: Explain the factors affecting choice of solvent in gas absorption.

B: What is diffusivity? Explain FICK's law of diffusion. [5]

C: What is molecular diffusion?

D: Explain the concept of equilibrium in inter phase mass transfer. [5]

Q2:A: Derive equation for molar flux for steady state equimolar counter diffusion for gases. [10]

B: Calculate the rate of diffusion of butanol across a film of nondiffusing water(B) solution, 0.1 cm thick at 20 deg.C when the concentration on opposite sides of the film are respectively 10 and 4 percent acid. The diffusivity of butanol in the solution is 5.9 X 10⁻⁶ cm²/s. At 20 deg.C, the density of 10 % solution is 0.971 g/cc, and that of 4 % solution is 0.992 g/cc. Mol. wt. of butanol is 74. [10]

Q3: A: Explain diffusion through porous solid. [10]

B: Ammonia is absorbed at 1 bar from an ammonia air stream by passing it a vertical tube down which dilute H₂SO₄ is flowing. The following laboratory test data are available:

Length of the tube=825 mm, Diameter of tube=15 mm, Partial pressure of ammonia at inlet= 7.5 kN/m²,

Partial pressure of ammonia at out let= 2 kN/m².

The amount of ammonia absorbed at this condition is 1.12x10⁻⁶ kmol/sec. Determine the overall transfer coefficient k₆ based on gas phase. [10]

Q3 A: In a typical chemical process, component A is desorped from an aqueous solution into an air stream in a mass transfer tower at a certain operating temperature and pressure. At a particular point in the tower, analysis report shows that $P_{A,G} = 12 \text{ mm Hg}$, $C_{AL} = 4 \text{ kmol/m}^3$

The overall mass transfer coefficient K_G =0.269 Kmol A/ (m^2 .hr.atm.). If Henry's law is applicable to this system and if 56 % of total mass transfer resistance is in gas film. Calculate

Q.P. Code: 26251

(a) Gas film coefficient k_g (b) Liquid film coefficient (k_l) (c) Molar flux of component A, N_A . [10]

B: Explain following terms

(a) Equilibrium stage(b) Stage efficiency (c) Murphee stage efficiency(d)Stage(e)Cascades [10]

Q4: A: Carbon disulphide is to be absorbed from a dilute gas mixture of CS_2 - N_2 into a pure non volatile oil at atm.pressure in a counter-current absorber. The mole fraction of CS_2 in inlet gas stream is 0.05 and the flow rate of gas stream, G is 1500 kmol/hr. The equilibrium relation is given by $y = 0.5 \times 10^{-5} \times 10^{-5}$

B: Compare packed tower and tray tower. [10]

Q5:A:Explain (i) Saturated vapour gas mixture(ii)Relative humidity(iii)Humid volume(iv)Dew point(v)Humid heat [10]

B: Explain adiabatic saturation process. Derive equation for adiabatic saturation temperature. [10]

Q6: A: With neat diagram, explain various types of moisture. [5]

B: With neat diagram explain fluidized bed dryers [5]

C: A batch of wet solid was dried on a tray dryer using constant drying conditions and a thickness of material on the tray of 25.4 mm. Only the top surface was exposed. The drying rate during constant rate period was R=2.05 kg/ (kg hr m²). The ratio used was 24.4 dry solids / m^2 exposed surface. The initial free moisture content was W=0.55 and critical moisture content $W_c = 0.22$ kg moisture/kg dry solid. Calculate the time to dry a batch of this material from $W_1 = 0.45$ to $W_2 = 0.30$ using the same drying conditions but thickness of 50.8 mm, with drying from the top and bottom surfaces.

D: Write applications of spray dryer. [5]
