Q. P. Code: 24714

Duration: 3 hours Total Marks: 80

- N. B. (i) Question number one is compulsory.
 - (ii) Answer any **three** questions from the rest.
 - (ii) Assume suitable data wherever necessary.
- Q.1.a) At 1100 K n-nonane thermally cracks (breaks down into smaller molecules) 20 (5) times as rapidly as at 1000 K. Find the activation energy for this decomposition.
 - b) In case of a first order reaction, show that the time required for 75% conversion is (5) double the time required for 50% conversion?
 - c) Write design equation for batch reactor

(5)

- d) Write short note on effect of temperature and pressure on equilibrium conversion (5) and equilibrium constant.
- Q.2.a) For the gas phase decomposition of azomethane $(CH_3)_2N_2 \leftrightarrow C_2H_6 + N_2$ The rate expression is

$$r_{N_2} = \frac{k_1 C_{Azomethane}^2}{1 + k' C_{Azomethane}}$$

Where Azomethane= $(CH_3)_2N_2$

Devise a mechanism to explain this rate.

Q.2b) Variation of the rate constant with temperature for the reaction (10) $2N_2O_5 \longrightarrow 2N_2O_4 + O_2$ is given in the following table. Determine graphically the activation energy for the reaction. Also write complete rate equation.

X	Temp.(K)	298	308	318	328	338
	k (sec ⁻¹)	1.74x10 ⁻⁵	6.61x10 ⁻⁵	2.51 x10 ⁻⁴	7.59x10 ⁻⁴	2.40x10 ⁻³

- Q.3 a) The gaseous reaction 2A \longrightarrow R+ 2S is second order w.r.t A. If pure A is introduced at 1 atm into a constant volume batch reactor, the pressure rises by 40% in 3 min. In case of a constant pressure batch reactor
 - i) find the time required for the same conversion
 - ii) The fractional change in volume at that time.

Q.3b) The first-order reversible liquid reaction

$$A \leftrightarrow R$$
, $C_{A0} = 0.5 \frac{mol}{lit}$, $C_{R0} = 0$

takes place in a batch reactor. After 8 minutes, conversion of A is 33.3% while equilibrium conversion is 66.7%. Find the rate equation for this reaction.

The homogeneous gas decomposition of phosphine Q.4 a)

(08)

$$4PH_3(g) \longrightarrow P_4(g) + 6 H_2$$

proceeds at 649°C with the first-order rate

$$-r_{PH_3} = (10/hr) C_{PH_3}$$

What size of plug flow reactor operating at 649°C and 460 kPa can produce 80% conversion of a feed consisting of 40 mol of pure phosphine per hour?

For the elementary reaction in series in a batch reactor Q.4b)

(12)

$$A \rightarrow R \rightarrow S$$
, $k1=k2$, at $t=0$; $C_A=C_{A0}$;

$$C_A=C_{A0}$$
;

$$C_{R0} = C_{S0} = 0$$

Find out the maximum concentration of R and when it is reached.

The elementary irreversible liquid phase reaction A+B \rightarrow C is carried out in a (15) mixed Flow reactor. An equimolar feed in A and B enters the reactor at 300 K and the volumetric flow rate is 2 lit/s. Calculate the volume of reactor to achieve 85% conversion when the reaction is carried out adiabatically.

Data: ΔH_f^0 for

A = -20 kcal/mol, for B = -15 kcal/mol and for C = -41 kcal/mol

 $C_{A0} = 0.10 \text{ kmol/m}^3$

 $C_{PA} = C_{PB} = 15 \text{ cal/(mol.K)}, \qquad C_{PC} = 30 \text{ cal/(mol.K)}$

- Q.5b) Compute Ky at 10 atm if Kp at this pressure is 0.00381 atm⁻¹ for ammonia (05) synthesis reaction from hydrogen and nitrogen at 500°C. Assume that the ideal gas law is applicable.
 - Q.6) Attempt any two of the following

(20)

- a) Derive design equation of Recycle reactor
- b) What is Optimum Temperature Progression? Explain with examples
- c) Explain Half Life method of analysis of rate data