916/17

TE/Sem V/BT/CBSGS Q.P. Code:18637

(KT)MAY-17 (Maximum Marks: 80)

Please check whether you have got the right question paper.

Note:

- 1. Question No. 1 is compulsory.
- 2. Attempt any three questions out of remaining five questions.
- 3. Assume suitable data wherever necessary.
- 4. Figures to right indicate full marks.

Q.1 Answer the following (Any four)

- a. Explain zeroth order and first order reaction with example. Write the rate of reaction equation for the same.
- b. What is Arrhenius equation? Discuss the effect of temperature on rate of reaction.

 05
- c. Derive the performance equation for PFR for first order reaction.

 05
- d. Explain air lift reactors in detail.

 e. Discuss the thermal behavior of stirred tank reactor.

 05
- a. Differentiate between CSTR, PFR and Batch reactors. Discuss the importance with
- Q.2 a. Differentiate between CSTR, Private Batch 7500 and Private Ba
 - b. A particular fermentation is to be carried out in a CSTR. The flow characteristics

 CSTR were evaluated by introducing a tracer in the form of pulse input. The time versus concentration of the tracer data are presented below. Find the average residence time and exit edge distribution E.

d evic cope	N. O		The same of	Tan	Tan	FO	60	70
t (min)	0	10	20	30	40	50	00	10
Tracer conc. (g/l)	0	2	6	7	5	3	1	0
11000	400	The second	of the second			THE RESERVE AND DESCRIPTION OF THE PERSON NAMED IN	22	

Q.3 a. Decomposition of acetone decarboxylic acid is first order reaction:

CO(CH2COOH)2 -> CO(CH3)2 +2 CO2

Following is the data for the same;

Temp. (K)	273	293	313	333		
kı (sec)-1	2.46 x 10 ⁵	47.5 x 10 ⁵	576 x 10 ⁵	5480 x 10 ⁵		
WI facel		on for this road	or this reaction.			

Find out the energy of activation for this reaction.

TURN OVER

05

10

10

		T2425 / T0535 BIOREACTOR ANALYSIS ANDTECH	
		TE/SemV/BT/CBSGS Q.P. Code: 18637 MAY 2017 TE/SemV/BT/CBSGS Q.P. Code: 18637	
	b.	Derive an equation to find out the conversion in non-ideal reactor using Tank-in-series	10
		Model.	
Q.4	a.	How do you interpret the batch reactor data to obtain the kinetics of a reaction?	10
		Explain integral method of analysis using first-order irreversible reaction as an example.	
	b.	On doubling the concentration of reactant, the rate of reaction triples. Find the reaction	05
		order.	
	c.	Explain non ideal behavior of reactors.	05
Q.5	a,	The gas phase reaction A + 2B ——— 2C, which is first order in B is carried out isothermally in a plug flow reactor. The entering volumetric flow is 3 dm ³ / min. and the feed is equimolar in A and B. The feed enters the reactor at 727°C and 10 atm. The rate constant at this temperature is 4 dm ³ / mol. min.	15
		i) What is the volumetric flow rate when conversion is 30%?	
		ii) What is the rate of the reaction at the entrance of the reactor?	
		iii) What is the rate when conversion of A is 40%?	
		iv) What is the concentration of A at the entrance of the reactor?	
		v) What is the concentration of A at 50% conversion?	
	b.	Explain bubble column reactor in detail.	05
Q.6	a.	Explain the effect of substrate and product inhibition on cell growth.	10
	b.	Derive an expression for maximizing R in a series reaction for a mixed flow reactors.	10