1.t-in sem-Biotech.

Bioreactor Analysis & Technology
TE/V/CBGS/BT/BIAZT

Q.P. Code: 31237

(3 HOURS) Note:

(MAX. MARKS: S0)

Question No. 1 is compulsory.

- 2. Attempt any three questions out of remaining five questions.
- 3. Assume suitable data wherever necessary.
- Answer the following

2106/2016

a. Explain zeroth order reaction, first order reaction and reaction rate constant.

- b. Differentiate between CSTR and PFR.
- c. What are homogeneous and heterogeneous reactions?
- d. What are the types of bioreactors?
- e. What are non-ideal reactors?
- a. A reaction A + 2B ———— C takes place in a two stage CSTR one of volume 100 m³ and the other 50 m³. The volumetric feed rate is 10 lit/min. $C_A = C_B = 1.5$ mol/lit and the overall rate constant is 0.01 lit/ mol. Min. Calculate the overall conversion.
 - b. Explain on what factors the residence time distribution depends on nonideal reactors?

10

20

a. Derive the performance equation for steady state batch reactor.

b. The gas phase reaction 2A +4B ———— 2C, which is first order in B is carried out isothermally in a plug flow reactor. The entering volumetric flow is 2.5 dm³/ min. and the feed is equimolar in A and B. The feed enters the reactor at 727°C and 10 atm. The rate constant at this

temperature is 4 dm³/ mol. min.

- i) What is the volumetric flow rate when conversion is 25%?
- ii) What is the rate of the reaction at the entrance of the reactor?
 - iii) What is the rate when conversion of A is 40%?
 - iv) What is the concentration of A at the entrance of the reactor?
 - v) What is the concentration of A at 40% conversion?
- Q.4 a. Explain the effect of substrate and product inhibition on cell growth.

A particular fermentation is to be carried out in a chemostat. Before carrying out the actual fermentation, it was decided to evaluate the flow characteristics of the chemostat by introducing a tracer in the form of pulse input. The time versus concentration of the tracer data are presented below. Find the average residence time and exit edge distribution E.

t (min)	0	10	20	30	40	50	60	70
Tracer conc. (g/l)	0	2	6	7	5	3	1	0

Q.5 a. Explain the modeling of non-ideal reactors.

10

[P.T.O]

10

20

Q.P. Code: 31237

b. The enzyme ATPase catalyzes the reaction ATP++ ADP -----> P_i. In the process the enzyme gets deactivated. The deactivation rate constant was determined at different temperatures. The results are;

Temp. (OC)	25	30	35	
kd (min-1)	0.0825	0.0907	0.1	

Q.6 Write a note on (Any four)

- a. Plug flow reactor
- b. Thermal behavior of CSTR
- c. Fluidized bed reactor
- d. Kinetic model for cell growth
- e. RTD studies

FW-Con.11963-16.