Q. P. Code: 34333

		(2 ½ Hours)	[Total Marks: 75]		
N.B.	1) All que	stions are compulsory.			
	, .	to the right indicate marks.			
		tions, in-depth answers and diagrams will be appreciated			
	,	of sub-questions is not allowed.			
Q. 1	Attemnt	All(Each of 5Marks)	(15M		
(a)	-	Choice Questions.			
(u)	i)	The set of all linear combinations of vectors v_1 , v_2 ,, v_n	is called the		
	1)	of the vectors.	n 13 canea the		
		a) Convex b) concave c) span d) combination.			
		a) convex b) concave c) span a) combination.			
	ii)	Nullity of T is the dimension of of T.			
		a) Kernel b) Image c) Rank d) none of the above	re. 8 2 3 3 3		
	iii)	$ A-\lambda I = 0$ is called equation.			
	,	a) Quadratic b) characteristics c) cubic d) Null.	2/2/200		
			(\$ \delta \)		
	iv)	In GF (2), 1+1+0+1 =			
		In GF (2), 1+1+0+1 = a) 0 b) 1 c) 3 d) 2.			
	v)	For any homogenous system is a trivial solu	tion.		
	e e	a) Zero b) non zero c) one d) none of the above	re.		
(b)	Fill in the	o blanks			
(0)	(Spare, Unique, Unit, $\sqrt{45}$, Inner product)				
	(SPG-2)				
	(i)	A vector whose norm is one is called vector.			
	ii)	A vector space together with inner product is called	space.		
	iii)	If most of the element of a matrix have zero value is	called		
		matrix			
	iv)	The absolute value of 3+6i =			
	v)	Inverse of a matrix is			
(c)	Define.				
12 15 16 12 16 16 16 16 16 16 16 16 16 16 16 16 16		Dot product.			
13.00 V	i) ii)	Gatois field.			
5/0/1/2	iii)	Eigen Value.			
66	iv)	Orthogonal Complement.			
	(v)	Dimension.			
Jay S	10,629,V, 6				

Q. P. Code: 34333

Q. 2 Attempt the following (Any THREE)

(15M)

- (a) Find the Square root of 21 20i, where $i = \sqrt{-1}$
- (b) Consider the following system of equation and find the nature of solution without solving it.
 - i) $x_1 + x_2 = 4$ $2x_1 + 2x_2 = 8$
 - ii) $x_1 + x_2 = 3$ $x_1 - x_2 = -1$
- (c) Solve the following system by backward substitution method $x_1 3x_2 2x_3 = 7$ $2x_2 + 4x_3 = 4$ $10x_3 = 20$
- (d) Let W_1 and W_2 are two subspaces of V then prove that $W_1 \cap W_2$ is also a subspace of V where V is a vector space on IR.
- (e) Write a python Program for rotating a complex number Z = 2+3i by 180°
- (f) Which of the following is a set of generators of IR^3
 - i) $\{(4,0,0),(0,0,2)\}$
 - ii) $\{(1,0,0),(0,1,0),(0,0,1)\}$

Q. 3 Attempt the following (Any THREE)

(15M)

- (a) Find the null space of matrix 7 6 8 3 4 7
- (b) Let $f: U \rightarrow V$ is a linear transformation then show that kerf = $\{0\}$ iff f is injective.
- (c) Find the co-ordinate representation of vector v = (0,0,0,1) in terms of the vectors [1,1,0,1], [0,1,0,1] and [1,1,0,0] in GF (2).
- (d) Find the angle between the two vectors a = (2,3,4) and b=(1,-4,3) in IR^3 .
- (e) Consider Subspace $U_1 \{(x, y, w, z) : x y = 0\}$ and $U_2 \{(x, y, w, z) : x = w, y = z\}$ Find a basis and dimension of i) U_1 ii) U_2 iii) U_1 \cap U_2 .
- (f) If V and W are two subsets of a vector space V such that U is a subset of W then show that W^0 is a subset of U^0 where U^0 , W^0 are annihilator of U and W respectively.

Q. 4 Attempt the following (Any THREE)

(15)

- (a) Let u and v are orthogonal vectors then prove that for scalars a,b. $||au + bv||^2 = a^2||u||^2 + b^2||v||^2$
- (b) Explain Internet Worm.
- (c) Write a program in python to final gcd (240,24)

Q. P. Code: 34333

(d) Solve the following system by Gaussian elimination method.

$$y-z=3$$

-2x + 4y -z = 1
-2x + 5y - 4z = -2

- (e) Find the orthonormal basis for subspace IR⁴ whose generators are $v_1=(1,1,1,1), v_2=(1,2,4,5), v_3=(1,-3,-4,-2)$ Using Gram Schmidt orthogonali sation Method.
- (f) Let a = (3,0), b = (2,1) find vector in span $\{a\}$ that is closet to b is $b^{\parallel a}$ and distance $||b^{\perp a}||$.

Q. 5 Attempt the following (Any THREE)

(15)

- (a) Let $T: |R^3 \rightarrow |R^2|$ be a linear map defined by f(x,y,z) = (x+2y-z, x+y-2z)Verify Rank T + Nullity T = 3.
- (b) Fill the table.

Vector space	Basis	Dimension
{0}		
IR ²	$\{(1,0),(0,1)\}$	
$P_2(x)$		3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
$M_2(IR)$		48888
IR		

- (c) Find eigen values and eigen vectors of $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$
- (d) Let S be a subset of vector space V. Prove that S^{\perp} is a subspace of V.
- (e) Check whether the following set {(1,1,0), (0,1,1), (1,1,1)} is linearly Independent or not.

