

08-06-15

Q.P. Code: 3516

(3 Hours)

[Total Marks: 80

10

8

12

N.B.: (1) Question No. 1 is compulsory.

- Attempt any Three out of remaining Five questions.
- Assume suitable data wherever necessary.
- Explain briefly First law of thermodynamics and explain its significance. 20 1.
 - Prove that entropy is a property of the system. (b)
 - Derive an expression for entropy changes in case ideal constant volume process. (c)
 - (d) Find the enthalpy and entropy of steam when the pressure is 2MPa and the specific volume is 0.09 m³/kg.
 - Draw P-V and T-S diagrams of reversible constant volume and constant pressure processes?
- 2. Calculate the final temperature, pressure, work done and heat transfer if 10 the fluid is compressed reversibly from volume 6m³ to 1m³ in a cylinder. Comment on the results when the initial temperature and pressure of fluid as 20°C and 1 bar. The index of compression may be assumed as 1.3 and 1.4 respectively. Take Cp=1.005 and I Cp=0.718 kj/kg.k.
 - (b) 0.2 m³ of air at 4 bar and 130° C is contained in a system. A reversible adiabatic expansion takes place till the pressure falls to 1.02 bar. The gas is then heated at constant pressure till enthalpy increases by 72.5 kj. Calculate: i) the work done, ii) the index of expansion, if the above processes are replaced by a single reversible polytropic process giving the same work between the same initial and final states? Take $C_p = 1 \text{ kj/kg.k}$ and $C_v = 0.714 \text{ kj/kg.k}$
- 3. State and prove Carnot's theorem? (a)

(!) 5 kg of fluid per minute goes through a reversible steady flow process. The properties of fluid at the inlet are : $p_1 = 2$ bar, $\rho_1 = 25$ kg/m³, $C_1 = 100$ m/s, and $u_1 = 1900$ kj/kg and at the exit are:: $p_2 = 6$ bar, $\rho_2 = 5.5 \text{kg/m}^3$, $C_2 = 180 \text{m/s}$, and $u_2 = 610 \text{kj/kg}$. During the passage, the fluid rejects 60kj/s and rises through 60 meters. Determine: i) the change in enthalpy ii) work done during the process.

[TURN OVER

2

- 4. (a) State and prove Claussius's inequality.
 - (b) A Carnot heat engine works between two thermal reservoirs A and B A is at constant temperature 600°C and B is at 250°C. Half of the power developed by the Carnot's engine is used to drive a generator to produce electricity and the other half is used to drive a heat pump which receives heat from thermal reservoir B and rejects heat to a thermal reservoir C which is at temperature 400°C. Calculate the heat rejected to thermal reservoir C by the heat pump. Also, calculate the heat rejected per hour to hermal reservoir C if 480 kw are generated by generator assuming 100% of generator efficiency.
- 5. (a) Derive an expression for air standard efficiency of Dual cycle?
- t 7

8

- (b) Briefly explain the following properties of steam: dryness fraction, wet steam, dry steam, degree of superheat and super heated steam.
- (c) Find the dryness fraction, specific volume and internal energy of steam at 5 7 bar and enthalpy 2550kj/kg.
- (a) In a constant volume Otto cycle, the pressure at the end of compression is 15 times that at the start, the temperature of air at the beginning of compression is 38°C and maximum temperature attained in the cycle is 1950°C.
 Determine: i) Compression ratio, ii) Thermal efficiency of the cycle, iii) Work done. Take γ = 1.4 for air.
 - (b) A simple Rankine cycle works between pressure of 28 bars and 0.06 bar, the initial condition of steam being dry saturated, calculate the cycle efficiency, work ratio and specific steam consumption.