S.E. SEM - III / PROD / CBSGS / FLUID MECHANICS & FLUID POWER / 29.11.17 Q. P. Code: 27047

(3 Hours)

Max. Marks: 80

 Question No 1 is compulso: 	1)	Ouestion No 1	is com	pulsor	V.
--	----	---------------	--------	--------	----

- 2) Attempt any three out of remaining five questions.
- 3) Figures to the right indicate full marks.
- Assume suitable data if required.

Q.1 a Write a short note on (Any Five)

20

- a) Define i) Dynamic viscosity and ii) Kinematic viscosity
- b) Define i) Centre of buoyancy and ii) Metacentric height
- c) Define i) Steady and Unsteady flow ii) Laminar and Turbulent flow
- d) Define Major and Minor energy losses
- e) Enlist the properties of hydraulic fluid.
- State different types of accumulator and explain one of them with neat sketch.
- g) Explain the pressure relief valve with neat sketch

Q.2 a State Newton's law of viscosity and give example of its application.

04

- b Describe in detail Meter-in, Meter-out and bleed-off circuit with neat 10 sketches
- A large tank of sea water has a door in the side 1 m square. The top of the door is 5 m below the free surface. The door is hinged on the bottom edge. Calculate the total pressure force and centre of pressure. The density of the sea water is 1033 kg/m³.
- Q.3 a Derive Bernoulli's equation and state the assumptions made.

07

- b Explain the principle of operation and working of regenerative hydraulic 06 circuit with neat sketch.
- c A venturimeter has its axis vertical, the inlet & throat diameter being 150 07 mm & 75 mm respectively. The throat is 225 mm above inlet and Cd = 0.96. Petrol of specific gravity 0.78 flows up through the meter at a rate of 0.029 m³/sec. Find the pressure difference between the inlet and throat.

Q.4 a What are the advantages and disadvantages of hydraulic system?

04

b Explain the working of the valves given below with neat sketches.

08

08

- Pressure reducing valve
- ii. Sequence valve
- Oil of viscosity 8 Poise and specific gravity 1.2 flows through a horizontal pipe 80 mm in diameter. If the pressure drop in 100 m length of the pipe is 1500 kN/m², determine,
 - 1. Rate of flow of oil.
 - 2. The maximum velocity
 - 3. The velocity and shear stress at 10 mm from the wall

Page 1 of 2

Q.5	a	Explain with neat sketch 4/3 Direction Control valve.	04	
1000	b	Derive Hagen-Poiseuille equation for laminar flow through circular pipe.	08	
	С	A pipe of diameter 20 cm and length 2000 m connects two reservoirs, having difference of water levels as 20 m. Determine the discharge through the pipe.		
		If an additional pipe of diameter 20 cm and length 1200 m is attached to the		
		last 1200 m length of the existing pipe, find the increase in the discharge.		
		Take f = 0.015 and Neglect the minor losses		
Q.6	a	Write ISO symbol for following (Any Four)	08	
		i. Flow control valve		
		ii. Bidirectional variable displacement motor		
		iii. Pressure switch		
		iv. Pressure relief valve		
		v. Fixed displacement hydraulic pump		
		vi. Double acting cylinder		
	b	Classify different types of pumps used in hydraulic circuit. Explain the working of vane pump with neat sketch.	06	
		A shaft of 20 mm and mass 15 kg slides vertically in a sleeve with a velocity	06	
		of 5 m/s. The gap between the shaft and the sleeve is 0.1 mm and is filled		
		with oil. Calculate the viscosity of oil if the length of the shaft is 500 mm.		
		그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그		