QP Code 12437

N.B.:

- (1) Question No.1 is compulsory
- (2) Attempt any three questions out of remaining five questions
- (3) Figures to right indicate full marks
- (4) Assume suitable data if necessary and justify the same.

		If the velocity distribution in a laminar boundary layer on a flat plate	e (05
	(C)	is		
		$\frac{u}{U} = a + b\left(\frac{y}{\delta}\right) + c\left(\frac{y}{\delta}\right)^2 + d\left(\frac{y}{\delta}\right)^3$		
		$U^{-a+b}(\overline{\delta})^{+c}(\overline{\delta})^{+a}(\overline{\delta})$		
		Determine the coefficient a, b, c and d. Here u is the velocity at the	1	
		distance y from the surface of the flat plate and U be the free stream		State of
		velocity at the boundary layer thickness δ .		
		Find the speed of sound in oxygen at a pressure of 100 kPa (abs) and	0	5
	(D)	25° C. Take R= 260 J/kg.K and k=1.4.		
	Q. 2(A)	An 80 mm diameter composite solid cylinder consists of an 80 mm	1	0
		diameter 20 mm thick metallic plate having specific gravity 4		
	47.3	attached at the lower end of an 80 mm diameter wooden cylinder of		1
		specific gravity 0.8. Find the limits of the length of the wooden		
		portion so that the composite cylinder can float in stable equilibrium		
		in water with its axis vertical.		
	(B)	The diameter of a pipe bend is 30 cm at inlet and 15 cm at outlet and	10	7
		the flow is turned through 120° (angle measured in clockwise		
		direction between direction of fluid flow at inlet and outlet) in a		1
		vertical plane. The axis at inlet is horizontal and the centre of the		1
		outlet section is 1.5 m below the centre of the inlet section. Total		
		volume of water in the bend is 0.9 m ³ . Neglecting friction, calculate		1
	97 218	the magnitude and direction of the force exerted on the bend by		
		water flowing through it at 250 litres/s and when inlet pressure is		1
		0.15 N/mm ² .		
(Q.3 (A)	Determine the maximum discharge of water that can be carried		
		without cavitation by a hariant 1 100 xx 50	10	
(100 mm and throat diameter 50 mm) venturimeter, which has a		
-		, , , , , , , , , , , , , , , , , , ,		

	coefficient of discharge of 0.95. The inlet pressure is 10 kPa	
	(gauge), the vapour pressure of water is 4 kPa (abs) and the local	
	atmospheric pressure is 96 kPa (abs).	
(B)	Given the velocity distribution in a laminar boundary layer on a flat	10
	plate as	
	$\frac{u}{U} = 2\left(\frac{y}{\delta}\right) - 2\left(\frac{y}{\delta}\right)^3 + \left(\frac{y}{\delta}\right)^4$	
	where u is the velocity at the distance y from the surface of the flat	
	plate and U be the free stream velocity at the boundary layer	
1000	thickness δ . Obtain an expression for boundary layer thickness,	
	shear stress, and force on one side of the plate in terms of Reynolds	
	number.	
Q. 4(A)	A belt conveyor consists of a flat belt 0.5 m wide which slides at a	10
	velocity of 4 m/s parallel to a surface separated by a 6 cm thick layer	
	of oil of viscosity 0.25 Ns/m. Determine	
	(i) the pressure gradient required to cause no shear stress at the belt	
	surface	
	(ii) the average velocity and the discharge of oil to be maintained for	
	the above.	
(B)	Following is the velocity potential function for two dimensional	10
	irrotational flow in cylindrical coordinates:	
	$\phi = \frac{m\cos\theta}{r}$	
1		
	Determine the conjugate function (stream function).	
Q.5(A)	Draw rough nature of Moody Chart showing different regimes of	05
ر رقي .	fluid flow and explain its significance	
(B)	What is critical pressure ratio for compressible flow in nozzle?	05

	Explain its significance.	T
(C)		
Q.6 (A)	Three pipes with details as following are connected in parallel between two points Pipe Length Diameter 1 1000 m 20 cm 0.02 2 1200 m 30 cm 0.015 3 800 m 15 cm 0.02 When the total discharge of 0.30 m³/sec flows through the system, calculate distribution of discharge and head loss between the junctions.	10
(B)	Explain Prandtl mixing length theory for turbulent fluid flow.	05
(C)	Write short note on induced drag on an aerofoil.	05