## SET 8em-III / MECH/ Thermodynamics / May 14

QP Code: NP-18643

|    | (3 Hours)                                                                                                                                                             | tal Marks: | 80 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
|    | N. B.: (1) Question No. 1 is compulsory.                                                                                                                              |            |    |
|    | (2) Solve any three questions from remaining five questions.                                                                                                          |            |    |
|    | (3) Assume suitable data if required.                                                                                                                                 |            |    |
|    | (4) Use of Mollier Chart, Steam table is permitted.                                                                                                                   |            |    |
| 1. | (a) What is cut-off ratio? How does it affect the thermal efficiency of Dies                                                                                          | sel cycle? | 4  |
|    | (b) State the Clausius-Clapeyron equation.                                                                                                                            |            | 4  |
|    | (c) I kg of steam at a pressure of 17 bar and dryness 0. 95 is heated at a pressure until it is completely dry. Determine: (i) Increase in volume (ii) of heat added. |            | 4  |
|    | (d) Differentiate between non-flow and flow process. What is steady flow                                                                                              | process?   | 1  |
|    | (e) Define adiabatic flame temperature and explain its practical significan                                                                                           | _          | 4  |
|    |                                                                                                                                                                       |            | 7  |
| 2. | (a) Derive Maxwell's equations.                                                                                                                                       |            | 4  |
|    | (b) Show that the efficiency of all reversible heat engines operating between                                                                                         | the same   | 8  |
|    | temperature limits is same.                                                                                                                                           |            |    |
|    | (c) 0.06 m <sup>3</sup> air at 5 bar and 200°C expands isentropically until the pressure                                                                              | becomes    | 8  |
|    | 2 bar. It is then heated at constant pressure until the enthalpy increase d process is 80 KJ. Calculate work done in each process and total work                      |            |    |
| 3. | (a) What are the four processes which constitute the Stirling cycle? Show                                                                                             | v that the | 6  |
|    | regenerative Stirling cycle has same efficiency as the Carnot cycle.                                                                                                  |            |    |
|    | (b) An engine with 30% efficiency drives a refrigerator having COP of 5                                                                                               |            | 6  |
|    | the heat input into the engine if 10 MJ of heat is removed from the o                                                                                                 | 17.7       |    |
|    | by the refrigerator? Find total quantity of heat rejected to the surroun                                                                                              |            |    |
|    | (c) The products of combustion of an unknown hydrocarbon C <sub>x</sub> H <sub>y</sub> have the                                                                       | following  | 8  |
|    | composition as measured by an Orsat apparatus:                                                                                                                        |            |    |
|    | $CO_2 = 8.0\%$ , $CO = 0.9\%$ $O_2 = 8.8\%$ and $N_2 = 82.3\%$                                                                                                        |            |    |
|    | Determine: (i) The composition of the fuel.                                                                                                                           |            |    |
|    | (ii) The air-fuel ratio.                                                                                                                                              | 9          |    |
|    | (iii) The percentage excess air used.                                                                                                                                 | *          |    |
| 1  | (a) Define (i) Deminage function                                                                                                                                      |            |    |
| 4. | (a) Define: (i) Dryness fraction (ii) Critical point                                                                                                                  |            | 4  |
|    | (iii) Critical point                                                                                                                                                  |            |    |
|    | (iii) Triple point (iv) Degree of superheat                                                                                                                           |            | ,  |
|    | (b) 0.6 m <sup>3</sup> of air at 37°C and I bar is heated at constant volume until the                                                                                | nressure   | _  |
|    | becomes 2 bar. It is then cooled at constant pressure to its original ten                                                                                             |            | 6  |

Calculate the change of entropy in each process.

- In an air standard cycle pressure at the beginning of compression is I bar, while temperature is 310 K. Compression ratio is 10:1, Heat added is 2800 KJ/Kg of charge. The maximum pressure limit is 70 bar. If heat is added partially at constant volume and partially at constant pressure, find:

  - (i) Air standard efficiency (ii) Mean effective pressure.
- Explain: (i) Enthalpy of reaction (ii) Enthalpy of formation (iii) Heating value.

10

10

- How much of the 1200 KJ of thermal energy at 700 K can be converted to useful work if the environment is at 25°C
- A turbocompressor delivers 2.33 m<sup>3</sup>/s of air at 0.276 MPa, 43°C which is heated at this pressure to 430°C and finally expanded in a turbine which delivers 860 kW. During expansion there is a heat transfer of 0.09 MJ/s to the surroundings. Calculate the turbine exhaust temperture if changes in kinetic and potential energy are negligible.
- Derive an expression for availability of a non flow process. 6.

- In a reheat cycle steam at 500°C expands in H.P. turbine till it is saturated vapour. It is reheated at constant pressure to 400°C and then expands in L. P. turbine to 40°C.If the maximum moisture content is limited to 15% at the turbine exhaust, find
  - (i) Reheat pressure.
  - (ii) The pressure of steam at inlet to H.P. turbine.
  - (iii) Net specific work output.
  - (iv) Cycle efficiency.
  - (v) Steam rate.